Self-Assembled Binary Superlattices of CdSe and Au Nanocrystals and Their Fluorescence Properties

Elena V. Shevchenko, Moritz Ringler, Alexander Schwemer, Dmitri V. Talapin, Thomas A. Klar, Andrey L. Rogach, Jochen Feldmann, and A. Paul Alivisatos

The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and Photonics and Optoelectronics Group, Physics Department and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universita¨t Mu¨nchen, Amalienstr. 54, 80799 Munich, Germany


E. S. Shibu 15-03-08
Introduction

- Semiconductor and metal nanocrystals are important in many branches of Science and Technology not only due to their collective properties but also due to the new properties generated by the inter particle interactions at the nano scale.
- Interaction mechanism of Semiconductor nanoparticles with neighboring metal nanoparticles helps to understand the condition of the quenching of fluorescence of the semiconductor nanoparticles through a new nonradiative path generated by the metal nanoparticles.
- In this paper, they prepared the Binary nanoparticle superlattice of CdSe and Gold by the solvent evaporation method.
Preparation method

CdSe and Gold nanoparticles were Synthesized in organic phase.

8.7 nm CdSe and 5.5 nm gold were mixed and solvent were evaporated using the above set up.
CdSe: Gold = 1:0.7

BNSL isostructural with AuCu
BNSL isostructural with AIB$_2$

CdSe: Gold = 1:5
dodecanethiol

CdSe: Gold = 1:5

BNSL isostructural with CaCu$_5$
CdSe: Gold = 1:5

BNSL isostructural with Cub-AB$_{13}$

trioctylphosphine oxide
(a) HRSEM images of the CdSe/gold nanoparticle superlattice (AIB$_2$). (b) That of CdSe particle superlattice.
Life time of Binary = 0.45 ns
Life time of CdSe = 2.2 ns

The decrease in the emission intensity and life time of binary Superlattice compared to CdSe Nanoparticle superlattice is assumed due to the energy transfer From CdSe nanoparticle to surrounding Gold nanoparticles.
Conclusion

- Prepared the CdSe and gold nanoparticles in the organic phase.
- Nanoparticles were mixed in different ratio and prepared the BNSL in different pattern.
- The emission intensity and life time of the BNSL were found to be less compared to the pure nanoparticles. It is attributed due to the energy transfer from the CdSe to neighboring gold nanoparticles.