GC-MS interface

Krishnadas
26-04-2014
Interface connects gas chromatograph with a mass spectrometer.

After the separation in the GC column, analyte species have to be transported to the mass spectrometer to be ionized, mass filtered and detected.

Analytes should not condense in the interface. All interface designs contain a heat source or are lagged with a heating jacket.

Analytes must not decompose before entering the mass spectrometer ion source.

The gas load (dictated by the mobile phase gas flow rate) entering the ion source must be within the pumping capacity of the mass spectrometer.

GC-MS applications where the flow rates to the MS detector do not exceed 2 mL/min can usually be achieved by using direct interfaces.

Higher flow rates will require the use of vapor concentrator devices or jet separator interfaces.
Jet separator

Used for packed columns with gas flow > 2mL/min

Some volatile species may be lost to vacuum.
Direct introduction

Most commonly used design for capillary GC

Typical flow rates: 2 mL/min

Column is inserted directly into the MS ionisation chamber
Traditional method

GC-MS ferrules tend to be harder and less permeable to gases

Usually made up of graphite/Vesel

This method is no longer recommended as longer periods of time are required to properly change the GC column
When the column is removed for changing, the inert gas is pressurized and forms an effective barrier to the rapid intake of air and moisture thus serving to retain the vacuum.
When a restriction connector is installed, pressure drop across the 100 um transfer line makes it necessary to increase the head pressure to obtain retention times equal to those obtained without connector.
THANK YOU