Supporting information 1

The time dependent UV-Visible spectra obtained after mixing (0.25mM) cfH with gold nanoparticles at a time interval of 30 minutes (traces a-d); trace (e) was taken after 6 hours. Trace (a) corresponds to time zero, ie. just after addition of cfH.

Supporting information 2

Calculation of the surface coverage of the nanoparticles from the absorption spectroscopy.

(i) The calculations for the number of cfH molecules per Au particle are as follows:

The intensity of dominant peak at 271 nm of pure cfH in water was taken as the reference for measuring the molar concentration.

 I_0 , the initial intensity just after mixing and I_c is the intensity of the centrifugate.

 I_0 - $I_c = I_a$ (the intensity corresponding to cfH molecules adsorbed on Au nanoparticle surface ------(1)

Intensity (I_a) α concentration (C_a)

We measured the intensity of known concentration of pure cfH (C_k), which is (I_k).

$$(I_a) = K (C_a)$$
 -----(2)

$$(I_k) = K (C_k)$$
 -----(3)

From equations (2) and (3), (C_a) can be calculated.

398 g of HAuCl₄.3H₂O on reduction will give 198 g of Au.

W is the weight of Au formed theoretically. From TEM measurements, we can calculate the radius/volume of the nanoparticle. From that, we calculate, the weight of each nanoparticles (W_{np}). From this, the number of nanoparticles is,

 $N_p = W/W_{np}$ -----(4)

Number of cfH molecules $(N_m) = C_a \times 6.023 \times 10^{23}$ -----(5)

Number of cfH molecules per nanoparticle (x) = N_m / N_p ------(6)

A standard solution of ciprofloxacin in water is taken for this calculation (0.1 mM), which is (C_k)

It shows an absorbance intensity of 1.6175 (I_k))

Thus $I_k = 1.6175$, $C_k = 0.1 \text{ mM}$ -----(7)

The concentration of HAuCl₄. 3H₂O =0.05 mM, so that, 1000 ml of the sol contains

 $9.9 \ X \ 10^{\text{-3}} g \ of \ Au$,

The weights (W_{np}) of 4 nm and 15 nm nanoparticles are 0.647 X 10⁻¹⁸g and 34.1 X 10⁻¹⁸g respectively.

Thus the number of 4 nm and 15 nm nanoparticle (N_p) present in 1000 ml of gold colloids are 1.53 X 10¹⁶ and 2.9 X 10¹⁴ respectively.

Case 1:4 nm particles

 I_o =1.758, I_c =1.306, Hence, N _m = 9.94 X 10^{18}------ (8) From the above, number of cfH molecule per nanoparticle (x) = N_m / N_p ~ 65 Case 2 : 15 nm particles

 $I_o = 1.353$, $I_c = 1.294$, Hence, $N_m = 1.7 \times 10^{17}$ ------(9)

Hence, the number of cfH molecules per nanoparticle $\,$ (x) = $N_m/$ $N_p \,$ ≈ 585

(ii) Calculation of surface area or density of cfH molecules

Surface area of cfH molecules = surface area of a nanoparticle / number of cfH molecules per nanoparticle

Case 1: 4 nm particles

Surface area (A) = 200.96 nm^2

Number of cfH molecule per nanoparticle (x) = $N_m / N_p \approx 65$

Area of cfH = A / x = $200.96 / 65 = 3.09 \text{ nm}^2$

Case 2: 15 nm particles

Surface area nanoparticle (A) = 2826 nm^2

Number of cfH molecule per nanoparticle (x) = $N_m / N_p \approx 585$

Surface area of cfH molecules = A / x =2826 / 585 = 4.84 nm²

Supporting information 3

UV-visible spectra of cfH (0.25 nm) capped gold nanoparticles (15-20 nm) dispersed in different organic solvents. a) dimethyl sulphoxide, b) N,N dimethyl formamide, c) 1- butanol and d) 2-propanol. The spectra have been shifted vertically.