Supporting information

Novel cage clusters of MoS$_2$ in the gas phase

_D. M. David Jeba Singha, T. Pradeepa*, Joydeep Bhattacharjeeb and U. V. Waghmareb*

aDepartment of Chemistry and Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai 600 036, India and bTheoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India.
Supporting information 1

Figure 1.1 Schematic view of the sample spot on the MALDI target plate.
Supporting information 2

PSD mode spectra of some peaks

Figure 2.1. PSD spectrum of Mo$_3$S$_7^-$ (m/z=513) showing the fragments at Mo$_3$S$_4^-$ (m/z=417) and Mo$_3$S$_5^-$ (m/z=449).

Figure 2.2. PSD spectrum of Mo$_4$S$_6^-$ (m/z=574) showing fragment at Mo$_2$S$_3^-$ (m/z=285).
Figure 2.3. PSD spectrum of Mo$_{13}$S$_{28}^-$ showing the fragment ions, Mo$_{13}$S$_{26}^-$ (m/z 2081), Mo$_{13}$S$_{25}^-$ (m/z 2049) and Mo$_{11}$S$_{19}^-$ (m/z 1664).

Figure 2.4. Spectrum showing peaks due to MoO$_3$ and MoS$_2$ with clear isotope resolution.
Supporting information 3
Various analyses in the extracted MoS$_2$ flakes.

Figure 3.1. The infrared spectrum of the MoS$_2$ extract (a) is compared with bulk MoS$_2$ (b). There is a one to one correspondence between the peaks. Minor changes are attributed to the particle size effects (Maugea, F.; Lamotte, J.; Nesterenko, N. S.; Manoilova, O.; Tsyganenko, A. A.; Catalysis Today 2001, 70, 271–284).

Figure 3.2. UV-Visible spectrum of extracted MoS$_2$ nano flakes. The peak maximum is at 770 nm.
Figure 3.3. UV-Visible diffused reflectance spectrum of bulk MoS\textsubscript{2} showing the bulk band gap of 1.37 eV (Mattheiss, L. F.; Phys. Rev. Lett., 1973, 30, 784-787). The spike around 850 nm is due to a change in the light source of the instrument.

Figure 3.4 Raman spectrum of MoS\textsubscript{2} nanoflakes with 514 nm excitation. The spectrum was measured with a Witec confocal Raman microscope.
Supporting information 4

Figure 4.1. (A) Ion selection at m/z 162 corresponding to MoS$_2^-$, (B) ion selection at m/z 1146 corresponding to Mo$_8$S$_{12}^-$. While the first one shows extensive clustering, the other shows regular fragmentation. In both Mo$_{13}$ peak was not present.
Figure 5.1. Atomic structure of the Mo$_{13}$S$_{25}$ cluster. A cloud in the center is plotted as a complement of charge density (region where the density is very close to zero), clearly showing the void space enclosed inside the cage-like structure of the Mo$_{13}$S$_{25}$ cluster.
Figure 5.2. Charge density contours of the Mo$_{13}$S$_{25}$ cluster, viewed along z-axis (top view of the structure in Figure 1). Plane of the contours is chosen near the bottom triangle of Mo atoms such that it passes through both Mo-S and S-S bonds. Red and White colored rings centered on Mo atoms correspond to fully occupied semi-core 4s and 4p states. Angular contours near the Mo-S bonds indicate their mixed ionic and directional covalent character.
Figure 6.1. LDI spectrum of WS$_2$ showing magic clusters around the W$_6$ cluster. The W$_{12}$ and W$_{13}$ clusters are zoomed.

Figure 6.2. PSD mode LDI mass spectrum of W$_6$S$_9$O$^-$ showing no fragmentation. Inset: PSD of W$_{12}$S$_{20}$O$^-$ showing no fragmentation.