Electronic supplementary material # Investigation of the role of NaBH₄ in the chemical synthesis of gold nanorods Akshaya K. Samal, Theruvakkattil S. Sreeprasad, Thalappil Pradeep* DST Unit on Nanoscience (DST UNS), Department of Chemistry and Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, Chennai 600 036 (India) *Email: pradeep@iitm.ac.in, Fax: 91-44-2257-0545/ 0509. Figure S1. Large area TEM image of GNRs synthesized using Pb seed particles. **Figure S2.** UV-visible spectrum obtained upon the addition of NaBH₄ to the growth solution, without silver nitrate. **Figure S3.** UV-visible spectra of GNRs prepared by using (a) 50 μ L of Au@citrate (~16 nm) and (b) 50 μ L NaBH₄ added Au@citrate (100 μ L NaBH₄ was added to 500 μ L of Au@citrate and from this 50 μ L NaBH₄ added to the growth solution). Various shapes were observed in TEM for trace a. **Figure S4.** UV-visible spectra of GNRs formed with increasing amount of seed solution; (a) 105 μ L, (b) 210 μ L, (c) 420 μ L, and (d) 630 μ L. #### S5. Determination of effective BH₄- (or electrons) used in the GNR formation The following calculations illustrate two important aspects: - 1. Some of the Au¹⁺ undergoes reduction to Au⁽⁰⁾ initially forming in-situ seeds. The remaining Au¹⁺ ions get reduced on the preferred surfaces of the seeds, forming GNRs. - 2. The effective moles/number of electrons available for the reduction of Au^{1+} has a strong similarity in the two methods of GNR formation (seed-mediated synthesis and direct addition of $NaBH_4$ to the growth solution). ### Seed-mediated growth of GNRs: Composition of the seed solution: CTAB: 100 mM, 7.5 ml Au³⁺: 10 mM, 250 μ I \rightarrow Number of moles of Au³⁺ = 2.5 μ moles NaBH₄: 10 mM, 600 μ l \rightarrow Number of moles of BH₄- = 6 μ moles 3 moles of BH₄- will reduce 8 moles of Au³⁺ to Au⁽⁰⁾ in the seed solution [Note: $BH_4^- + 3H_2O \rightarrow B(OH)_3 + 7H^+ + 8e^-$ $AuCl_{4}^{-} + 3e^{-} \rightarrow Au^{(0)} + 4Cl^{-}$ 1 mole of Au³⁺ need to be reduced = 3/8 moles BH₄- 2.5 μ moles of Au³⁺ need to be reduced = 2.5 * 3/8 = 0.9375 μ moles BH₄- Remaining BH₄- present in the seed solution = $6 - 0.9375 = 5.0625 \mu moles$ Total volume of seed solution prepared = 8350 µl Seed solution added to growth = 105 µl Effective moles of BH₄- added through seeds = $105/8350 * 5.0625 = 0.0636 \mu moles$ Number of moles of electrons added through seeds to the growth solution = 0.0636*8 = 0.5088 µmoles #### NaBH₄ assisted *in-situ* growth of GNRs: 50 μl, 1.67 mM NaBH₄ was added to the growth solution Effective moles of BH₄- added = $1.67*50 = 0.0835 \mu moles$ Number of moles of electrons added to the growth solution = $0.0835*8 = 0.668 \mu moles$ Effective BH₄- (in µmoles) was calculated similarly in all cases. This was used to make Figure 9. **Figure S6.** EDAX spectrum of GNRs synthesized using Pb seed particles. The presence of Cu is due to the copper grid used.