Electronic supplementary material

Investigation of the role of NaBH₄ in the chemical synthesis of gold nanorods

Akshaya K. Samal, Theruvakkattil S. Sreeprasad, Thalappil Pradeep*

DST Unit on Nanoscience (DST UNS), Department of Chemistry and Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, Chennai 600 036 (India)

*Email: pradeep@iitm.ac.in, Fax: 91-44-2257-0545/ 0509.

Figure S1. Large area TEM image of GNRs synthesized using Pb seed particles.

Figure S2. UV-visible spectrum obtained upon the addition of NaBH₄ to the growth solution, without silver nitrate.

Figure S3. UV-visible spectra of GNRs prepared by using (a) 50 μ L of Au@citrate (~16 nm) and (b) 50 μ L NaBH₄ added Au@citrate (100 μ L NaBH₄ was added to 500 μ L of Au@citrate and from this 50 μ L NaBH₄ added to the growth solution). Various shapes were observed in TEM for trace a.

Figure S4. UV-visible spectra of GNRs formed with increasing amount of seed solution; (a) 105 μ L, (b) 210 μ L, (c) 420 μ L, and (d) 630 μ L.

S5. Determination of effective BH₄- (or electrons) used in the GNR formation

The following calculations illustrate two important aspects:

- 1. Some of the Au¹⁺ undergoes reduction to Au⁽⁰⁾ initially forming in-situ seeds. The remaining Au¹⁺ ions get reduced on the preferred surfaces of the seeds, forming GNRs.
- 2. The effective moles/number of electrons available for the reduction of Au^{1+} has a strong similarity in the two methods of GNR formation (seed-mediated synthesis and direct addition of $NaBH_4$ to the growth solution).

Seed-mediated growth of GNRs:

Composition of the seed solution:

CTAB: 100 mM, 7.5 ml

Au³⁺: 10 mM, 250 μ I \rightarrow Number of moles of Au³⁺ = 2.5 μ moles

NaBH₄: 10 mM, 600 μ l \rightarrow Number of moles of BH₄- = 6 μ moles

3 moles of BH₄- will reduce 8 moles of Au³⁺ to Au⁽⁰⁾ in the seed solution

[Note: $BH_4^- + 3H_2O \rightarrow B(OH)_3 + 7H^+ + 8e^-$

 $AuCl_{4}^{-} + 3e^{-} \rightarrow Au^{(0)} + 4Cl^{-}$

1 mole of Au³⁺ need to be reduced = 3/8 moles BH₄-

2.5 μ moles of Au³⁺ need to be reduced = 2.5 * 3/8 = 0.9375 μ moles BH₄-

Remaining BH₄- present in the seed solution = $6 - 0.9375 = 5.0625 \mu moles$

Total volume of seed solution prepared = 8350 µl

Seed solution added to growth = 105 µl

Effective moles of BH₄- added through seeds = $105/8350 * 5.0625 = 0.0636 \mu moles$

Number of moles of electrons added through seeds to the growth solution = 0.0636*8 = 0.5088 µmoles

NaBH₄ assisted *in-situ* growth of GNRs:

50 μl, 1.67 mM NaBH₄ was added to the growth solution

Effective moles of BH₄- added = $1.67*50 = 0.0835 \mu moles$

Number of moles of electrons added to the growth solution = $0.0835*8 = 0.668 \mu moles$

Effective BH₄- (in µmoles) was calculated similarly in all cases. This was used to make Figure 9.

Figure S6. EDAX spectrum of GNRs synthesized using Pb seed particles. The presence of Cu is due to the copper grid used.