Supporting information

Distinguishing Amorphous and Crystalline Ice by Ultralow Energy Collisions of Reactive Ions

Soumabha Bag, Radha Gobinda Bhuin, and T. Pradeep*

DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology Madras, Chennai- 600036, India.

*Corresponding author: Fax: + 91-44 2257-0545

E-mail: pradeep@iitm.ac.in
Figure S1. Stopping potential experiment of CH$_3^+$ performed at Q1. Inset shows the results of the same experiment performed at Q3. A schematic of the experiment is shown in another inset.
Figure S2. Stopping potential experiment of CH$_4^+$ performed at Q1. Inset shows the scheme of the experiment.
Supporting information 3

Figure S3. Mass spectra observed upon the collision varying energy of CH$_4^+$ on 100 ML ASW (D$_2$O) generated at 120 K.
Figure S4: Mass spectra observed after collision of varying energy CH₂⁺ projectile on crystalline ice (D₂O) made after annealing of the amorphous ice layer.
Figure S5: Mass spectra recorded upon collision of ultralow energy (1-10 eV) CH$_2^+$ ion on condensed 1-pentanol grown on amorphous ice (D$_2$O). CH$_2^+$ ion colliding with 1, 2, 3, 5, 8, 10 eV kinetic energy is shown here. Inset shows the sputtering spectra upon the collision of 50 eV Ar$^+$ ion on the substrate.