Supporting Information for the paper:

Structure-Reactivity Correlations in Metal Atom Substitutions of Monolayer-Protected Noble Metal Alloy Clusters

Kumaranchira Ramankutty Krishnadas, Debasmita Ghosh, Atanu Ghosh, Ganapati Natarajan

and Thalappil Pradeep*

Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
Indian Institute of Technology Madras
Chennai 600 036, India
E-mail: pradeep@iitm.ac.in

General instrumental parameters used for ESI measurements
All samples were analyzed by Waters Synapt G2Si High Definition Mass Spectrometer equipped with electrospray ionization (ESI) and ion mobility (IM) separation. All the samples were analyzed in negative ESI mode. The optimized conditions for each experiments were as follows:

Characterization and reactions of $\text{Au}_{25-x}\text{Ag}_x(SR)_{18}$
Sample concentration: 10 µg/mL
Diluent: DCM
Sample flow rate: 20-30 µL/min
Source voltage: 2-3 kV
Cone voltage: 120-140 V
Source offset: 80-120 V
Trap collision Energy: 0 V
Transfer collision Energy: 0 V
Source temperature: 100°C
Desolvation temperature: 150°C
Desolvation gas Flow: 400 L/h
Characterization and reactions of Ag\textsubscript{25-x}Au\textsubscript{x}(SR)\textsubscript{18}

Sample concentration: 10 µg/mL
Diluent: DCM
Sample flow rate: 20-30 µL/min
Source voltage: 1-2 kV
Cone voltage: 30-50 V
Source offset: 30 V
Trap collision Energy: 0 V
Transfer collision Energy: 0 V
Source temperature: 100°C
Desolvation temperature: 150°C
Desolvation gas flow: 400 L/h

Characterization and reactions of Au\textsubscript{x}Ag\textsubscript{44-x}(SR)\textsubscript{30}

Sample concentration: 10 µg/mL
Diluents: DCM
Sample flow rate: 20-30 µL/min
Source voltage: 0.5-2 kV
Cone voltage: 30-60 V
Source offset: 30-40 V
Trap collision Energy: 0 V
Transfer collision Energy: 0 V
Source temperature: 100°C
Desolvation temperature: 150°C
Desolvation gas flow: 400 L/h
Table of contents

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1</td>
<td>Mass spectrum and UV/vis absorption spectrum of Ag${25}$(DMBT)${18}$. Characteristic peak positions are marked in each spectrum.</td>
<td>S4</td>
</tr>
<tr>
<td>Figure S2</td>
<td>Mass spectrum and UV/vis absorption spectrum of Au${25}$(PET)${18}$. Characteristic peak positions are marked in each spectrum.</td>
<td>S5</td>
</tr>
<tr>
<td>Figure S3</td>
<td>Mass spectrum and UV/vis absorption spectrum of Ag${44}$(FTP)${30}$. Characteristic peak positions are marked in each spectrum.</td>
<td>S5</td>
</tr>
<tr>
<td>Figure S4</td>
<td>Mass spectrum and UV/vis absorption spectrum of Au${25}$(FTP)${18}$. Characteristic peak positions are marked in each spectrum.</td>
<td>S6</td>
</tr>
<tr>
<td>Figure S5</td>
<td>ESI mass spectra of a mixture of Ag${25-x}$Aux(SR)${18}$ with x > 12 before (A), 2 min (B), 20 min (C) after the addition of Ag${25}$(DMBT)$_{18}$ into it.</td>
<td>S7</td>
</tr>
<tr>
<td>Figure S6</td>
<td>ESI mass spectra of a mixture of Au${25-x}$Agx(SR)${18}$ with x > 12 before (A), 2 min (B), 5 h (C) after the addition of Au${25}$(PET)$_{18}$ into it.</td>
<td>S8</td>
</tr>
<tr>
<td>Figure S7</td>
<td>ESI mass spectra of a mixture of Au${25-x}$Agx(SR)${18}$ with x = 1-10 before (A), 2 min (B), and 1 h (C) after the addition of Au${25}$(BT)$_{18}$ into it.</td>
<td>S9</td>
</tr>
<tr>
<td>Figure S8</td>
<td>Expansion of the ESI mass spectra shown in Figure S7B showing the mixture of Au$_{25-x}$Agx(SR)${18}$ along with features due to fragment substitution.</td>
<td>S10</td>
</tr>
<tr>
<td>Figure S9</td>
<td>ESI mass spectra of a mixture of AuxAg${44-x}$(FTP)${30}$ with x = 1-9, in the 3` charge state, before (A), 2 min (B) and 1.0 h (C) after the addition of Ag${44}$(FTP)$_{30}$ into it.</td>
<td>S12</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>S10</td>
<td>ESI mass spectra of a mixture of Au\text{x}Ag_{44-x}(FTP){30} with x > 12 before (A), 2 min (B), 1.0 h (C) after the addition of Ag{44}(FTP)_{30} into it.</td>
<td>S13</td>
</tr>
<tr>
<td>S11</td>
<td>ESI mass spectra of a mixture of Au\text{x}Ag_{44-x}(FTP){30} with x > 12 before (A), 2 min (B), 1.0 h (C) after the addition of Ag{44}(FTP)_{30} into it.</td>
<td>S14</td>
</tr>
</tbody>
</table>

Supporting Information 1

![Figure S1](image)

Figure S1. ESI mass spectrum (A) and UV/vis absorption spectrum (B) of Ag_{25}(DMBT)_{18}. Characteristic peak positions are marked in each spectrum. Isotopic pattern of Ag_{25}(DMBT)_{18} is shown in the inset of (A).
Supporting Information 2

Figure S2. ESI mass spectrum (A) and UV/vis absorption spectrum (B) of Au$_{25}$(PET)$_{18}$. Characteristic peak positions are marked in each spectrum. Isotopic pattern of Au$_{25}$(PET)$_{18}$ is shown in the inset of (A).

Supporting Information 3

Figure S3. ESI mass spectrum (A) and UV/vis absorption spectrum (B) of Ag$_{44}$(FTP)$_{30}$. Characteristic peak positions are marked in each spectrum. Isotopic pattern of [Ag$_{44}$(FTP)$_{30}$]$^+$ is shown in the inset of (A).
Supporting Information 4

Figure S4. ESI mass spectrum (A) and UV/vis absorption spectrum (B) of Au$_{25}$(FTP)$_{18}$. Characteristic peak positions are marked in each spectrum. Isotopic pattern of Au$_{25}$(FTP)$_{18}$ is shown in the inset of (A).
Figure S5. ESI mass spectra of a mixture of $\text{Ag}_{25-x}\text{Au}_x(SR)_{18}$ with $x > 12$ before (A), 2 min (B), 20 min (C) after the addition of $\text{Ag}_{25}(\text{DMBT})_{18}$ into it.
Figure S6. ESI mass spectra of a mixture of \(\text{Au}_{25-x}\text{Ag}_x\text{(SR)}_{18} \) with \(x > 12 \) before (A), 2 min (B), 5 h (C) after the addition of \(\text{Au}_{25}\text{(PET)}_{18} \) into it.
Figure S7. ESI mass spectra of a mixture of $\text{Au}_{25-x}\text{Ag}_x(S\text{R})_{18}$ with $x = 1-10$ before (A), 2 min (B), and 1 h (C) after the addition of $\text{Au}_{25}(\text{BT})_{18}$ into it.
Figure S8. Expansion of the ESI mass spectra shown in Figure S7B showing the mixture of Au\(_{25-x}\)Ag\(_x\)(SR)\(_{18}\) along with the features due to fragment substitution. The red arrows indicate that the clusters Au\(_{24}\)Ag\(_1\)(SR)\(_{17}\)(BT)\(_1\), Au\(_{23}\)Ag\(_2\)(SR)\(_{17}\)(BT)\(_1\), Au\(_{22}\)Ag\(_3\)(SR)\(_{17}\)(BT)\(_1\), etc., are derived from the Au\(_{23}\)Ag\(_2\)(SR)\(_{18}\), Au\(_{22}\)Ag\(_3\)(SR)\(_{18}\) and Au\(_{21}\)Ag\(_4\)(SR)\(_{18}\), respectively, through metal-ligand exchange, i.e., (Ag-SR)-(Au-BT) exchange. Refer to the note below for details.

Note: The peaks Au\(_{24}\)Ag\(_1\)(SR)\(_{17}\)(BT)\(_1\), Au\(_{23}\)Ag\(_2\)(SR)\(_{17}\)(BT)\(_1\), Au\(_{22}\)Ag\(_3\)(SR)\(_{17}\)(BT)\(_1\), etc., can be considered as derived from ligand exchange of Au\(_{24}\)Ag\(_1\)(SR)\(_{18}\), Au\(_{23}\)Ag\(_2\)(SR)\(_{18}\), Au\(_{22}\)Ag\(_3\)(SR)\(_{18}\), respectively. However, if the former set of peaks (with –SR and BT ligands) are only due to ligand exchange, there should not be any change in the extent of alloying. However,
comparison of Figure S7A and S8 shows that number of Ag atoms present in the parent solution of Au$_{25-x}$Ag$_x$(SR)$_{18}$ clusters (see Figure S7A) has reduced from 0-9 to 0-4. This reduction in number of Au atoms cannot be explained by the ligand exchange as it cannot result in the substitution of metal atoms. Therefore, we conclude that the peaks Au$_{24}$Ag$_1$(SR)$_{17}$(BT)$_1$, Au$_{23}$Ag$_2$(SR)$_{17}$(BT)$_1$, Au$_{22}$Ag$_3$(SR)$_{17}$(BT)$_1$, etc., are most likely due to the metal-ligand exchange, i.e., (Ag-SR)-(Au-BT) exchange. However, contribution from the ligand exchange i.e., -SR – BT exchange cannot be ruled out.
Figure S9. ESI mass spectra of a mixture of $\text{Au}_x\text{Ag}_{44-x}(\text{FTP})_{30}$ with $x = 1-9$, in the 3^- charge state, before (A), 2 min (B) and 1.0 h (C) after the addition of Ag$_{44}$(FTP)$_{30}$ into it.
Figure S10. ESI mass spectra of a mixture of Au\textsubscript{x}Ag\textsubscript{44-x}(FTP\textsubscript{30} with x > 12 before (A), 2 min (B), 1.0 h (C) after the addition of Ag\textsubscript{44}(FTP\textsubscript{30} into it. Comparison of the mass spectra shown in (A)-(C) reveals that the intensity of the Au\textsubscript{x}Ag\textsubscript{44-x}(FTP\textsubscript{30} with x > 12 decreased significantly and Au\textsubscript{x}Ag\textsubscript{44-x}(FTP\textsubscript{30} with x < 12 appeared with significantly higher in intensity after the addition of Ag\textsubscript{44}(FTP\textsubscript{30} into it. These observations confirm that Au atoms of Au\textsubscript{x}Ag\textsubscript{44-x}(FTP\textsubscript{30} with x > 12 can be substituted with Ag atoms of Ag\textsubscript{44}(FTP\textsubscript{30} to form Au\textsubscript{x}Ag\textsubscript{44-x}(FTP\textsubscript{30} with x < 12. The mass spectra shown in Figure S11 further confirm this conclusion.
Figure S11. ESI mass spectra of a mixture of $\text{Au}_x\text{Ag}_{44-x}(\text{FTP})_{30}$ with $x > 12$ before (A), 2 min (B), 1.0 h (C) after the addition of $\text{Ag}_{44}(\text{FTP})_{30}$ into it. Note that $\text{Au}_x\text{Ag}_{44-x}(\text{FTP})_{30}$ with $x > 12$ do not appear in the 4$^-$ charge state; they appear only in the 3$^-$ charge state (see Ref. 36 in the main manuscript). Hence clusters with $x > 12$ were not observed in this mass spectra. Comparison of the mass spectra shown in (A)-(C) reveal that more $\text{Au}_x\text{Ag}_{44-x}(\text{FTP})_{30}$ clusters with $x < 12$ (labeled with *) appeared after the addition of $\text{Ag}_{44}(\text{FTP})_{30}$ into a mixture containing $[\text{Au}_{11}\text{Ag}_{33}(\text{FTP})_{30}]^{4+}$ and $[\text{Au}_{12}\text{Ag}_{32}(\text{FTP})_{30}]^{4+}$. Therefore, we conclude that the additional
$\text{Au}_x\text{Ag}_{44-x}(\text{FTP})_{30}$ clusters with $x < 12$ (labeled with *) are formed from the substitution of Au atoms of $\text{Au}_x\text{Ag}_{44-x}(\text{FTP})_{30}$ clusters with $x > 12$.