Crystallization of a Supramolecular Coassembly of an Atomically Precise Nanoparticle with a Crown Ether

Papri Chakraborty, Abhijit Nag, Korath Shivans Sugi, Tripti Ahuja, Babu Varghese, and Thalappil Pradeep*

Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, Chennai 600 036, India

Supporting Information

ABSTRACT: We report the crystal structure of a supramolecular coassembly of a red luminescent silver cluster, \([\text{Ag}_{29}(\text{BDT})_{12}(\text{TPP})_{4}]^{3-}\) (referred to as \(\text{Ag}_{29}\)) (BDT, 1,3-benzenedithiol; TPP, triphenylphosphine), with dibenzoxo-18-crown-6 (DB18C6). The structure may be viewed as crystallization-induced self-organization of DB18C6 molecules into cage-like hexamers in the interstitial spaces of the lattice of trigonal Ag_{29} (Ag_{29}T) clusters, which resulted in an anisotropic expansion of the Ag_{29}T lattice along its \(z\)-axis. This structure corresponds to a new family of “lattice inclusion” compounds in nanoclusters. Supramolecular forces guide the assembly of the clusters and the crown ethers, which pack into complex hierarchical patterns in their crystal lattice. We identified the effect of such a coassembly on the solid-state luminescence of the cluster. The crystals containing the coassembly were ∼3.5-fold more luminescent than the parent Ag_{29}T crystals. We also used high-resolution electrospray ionization mass spectrometry to get further insights into the nature of the complexation between Ag_{29} cluster and DB18C6. This study provides a new strategy for designing cluster-assembled functional materials with enhanced properties.

Atomically precise noble metal nano-clusters exhibit a rich diversity in their core and ligand structures.\(^{1-6}\) Precision in their structure, optical absorption features, and chemical reactivity confirm the molecular nature of such particles.\(^{7,8}\) Because of their unique physical and chemical properties, they also find applications in sensing, catalysis,\(^9\) and optoelectronics.\(^{10}\) Noncovalent interactions of the ligands, such as C−H···π, π−π, H-bonding, van der Waals, electrostatic interactions, etc., can induce different forms of assemblies in them.\(^{11}\) Such interactions also play an important role in organizing the clusters in their crystal lattice.\(^{12-14}\) Self-organization of the ligands into various patterns was observed in the lattice of \([\text{Au}_{24}(\text{BDT})_{3}(\text{TPP})_{3}]^{13-}\) (referred to as \(\text{Au}_{24}\)) (BDT, 1,3-benzenedithiol; TPP, triphenylphosphine), with dibenzoxo-18-crown-6 (DB18C6). The structure may be viewed as crystallization-induced self-organization of DB18C6 molecules into cage-like hexamers in the interstitial spaces of the lattice of trigonal Ag_{29} (Ag_{29}T) clusters, which resulted in an anisotropic expansion of the Ag_{29}T lattice along its \(z\)-axis. This structure corresponds to a new family of “lattice inclusion” compounds in nano-clusters. Supramolecular forces guide the assembly of the clusters and the crown ethers, which pack into complex hierarchical patterns in their crystal lattice. We identified the effect of such a coassembly on the solid-state luminescence of the cluster. The crystals containing the coassembly were ∼3.5-fold more luminescent than the parent Ag_{29}T crystals. We also used high-resolution electrospray ionization mass spectrometry to get further insights into the nature of the complexation between Ag_{29} cluster and DB18C6. This study provides a new strategy for designing cluster-assembled functional materials with enhanced properties.

Received: August 27, 2019
Accepted: October 8, 2019
Published: October 8, 2019
emission. Such studies suggest the potential of using crown and assemble into liquid crystalline phases with strong NIR and X = Cl/Br), can interact with functionalized 15-crown-5 characterized using optical absorption and ESI MS (Figure S1). Vapor di...cluster was synthesized following a reported protocol32 and study due to its high stability and luminescence properties. The...this cavity there are hydrophobic ethylenic groups. Function...applications in phase-transfer catalysis,26 ion transport mechanism,28 and as building blocks for supramolecular applications in phase-transfer catalysis, ion transport mechanism, and as building blocks for supramolecular architectures resulting from the interaction of functionalized crown ethers with polyoxometalates have been examined.29,30 Recently, Guy et al. reported...Due to such properties, crown ethers find numerous...cage-like hexamers in the void spaces of the lattice of Ag29...coassembly of an atomically precise red luminescent cluster, [Ag29(BDT)12(TPP)4][(DB18C6Na)3] (I) and [Ag29(BDT)12(TPP)][(DB18C6Na)5] (II), with a relative occupancy of 0.765:0.235 in the crystal lattice. The crystal structure of I is shown in Figure 1A. Three DB18C6Na+ molecules were assembled over one of the Ag3S3 faces of the cluster and oriented symmetrically around the C3 axis of I, which passed through the center of the icosahedron of the cluster and the Ag−P bond opposite to the Ag3S3 face. As crown ethers bind to alkali metal ions, Na+ was trapped in the cavity of DB18C6.33 Though Na+ was not added externally during the crystallization process, the source of Na+ was probably NaBH4 used for cluster synthesis. Intermolecular C−H···π interactions between DB18C6Na+ and the BDT and TPP ligands of the cluster existed in the crystal structure. Moreover, electrostatic interactions between the anionic Ag29 cluster and the three cationic units, DB18C6Na+, favored the crystallization. An expanded view showing the interactions between one DB18C6Na+ molecule and the neighboring BDT and TPP ligands of the cluster is presented in Figure 1B. One of the benzene rings of DB18C6Na+ comes in close proximity to a pair of BDT ligands of the cluster, and interacted by intense C−H···π contacts at distances of ~3.03−3.60 Å, which is comparable to the interaction distances observed in other supramolecular adducts of clusters.11 The C−H of the −CH2 group of DB18C6Na+ also interacted with the aromatic ring of a TPP ligand at a distance of ~3.34−3.37 Å. The three DB18C6Na+ molecules, attached on the cluster surface, also interacted between themselves through intermolecular C−H···π contacts at interaction distances of ~3.85 Å (Figure 1C). The Na+ at the center of three crown ethers were oriented in a triangular fashion with a distance of 9.77 Å between them, as shown in Figure 1C, and the 3-fold symmetry axis of I passed through the center of this triangle. In addition, H2O was also coordinated to Na+ with a Na−O distance of ~2.33 Å (Figure S3). II also showed similar geometry but it contained only one...
TPP ligand, which is opposite to the site of attachment of the crown ethers (Figure S4). Due to the labile binding of the TPP ligands of Ag\textsubscript{29} cluster, some of them were lost during crystallization to form II, which constituted a minor component in the crystal lattice. The structure was also carefully explored to find whether any meaningful disorder or inexplicable connectivity existed at any other part of the structure. But none could be found, indicating that no other molecule/fragment existed in the lattice. Further details on solving the crystal structure is presented in the supporting information (Table S1).

A mixture of I and II crystallized into a single crystal in the trigonal crystal system and R\textsubscript{3} space group. I and II share the same site in X-ray structure of which 76.5\% of the sites in the crystal are occupied by I and 23.5\% are occupied by II. The crystal containing the mixture of I and II is referred to as Ag\textsubscript{29}-DB18C6 in the following discussion. The packing of Ag\textsubscript{29}-DB18C6 was comparable to the packing of the trigonal polymorph of Ag\textsubscript{29} clusters (Ag\textsubscript{29}T)16. Along the z-axis, the unit cell was elongated to 57.15 Å in case of Ag\textsubscript{29}-DB18C6, compared to 46.65 Å in case of Ag\textsubscript{29}T, whereas the dimensions along the x- and y-axis were similar in both cases. This expansion of the lattice along one direction expanded the volume of the unit cell to 37,225 Å3, from the unit cell volume of 30,474 Å3 of Ag\textsubscript{29}T.16 Anisotropic expansion of the crystal lattice by the inclusion of guest molecules was also observed in the case of inclusion of gases in the lattice of clathrate hydrates.34 A view of the packing of I and Ag\textsubscript{29}T from the y-axis, presented in Figure 2A and B, revealed that the interstitial spaces in the lattice of Ag\textsubscript{29}T were occupied by DB18C6. The crown ethers were packed in between the clusters by C–H···π contacts, which increased the inter-cluster distances by ~0.53 nm along z-axis, compared to that of Ag\textsubscript{29}T. The nature of packing was similar when viewed from the x-axis (Figure S5). A view from the z-axis showed that the void spaces along the z-axis of Ag\textsubscript{29}T were occupied by the crown ethers in the case of I (Figure S6). The packing of II was also similar. The extensive interlocking of ligands in the lattice of Ag\textsubscript{29}-DB18C6 resulted in a densely packed structure. Moreover, the crown ethers were assembled into discrete hexameric units throughout the crystal lattice, view from the y-axis is presented in Figure 3A. The formation of these hexamers of crown ethers was favored by local intermolecular C–H···π contacts and the symmetry of the crystal packing. An expanded view of one such unit, (DB18C6Na\textsubscript{6})6+, presented in Figure 3B, reveals that each hexamer formed a hollow cage-like structure, where the pairs of opposite crown ethers on the surface of the cage were related by a centre of inversion. The six Na atoms of the cage were oriented in rectangular bipyramidal geometry (Figure 3C). Six water molecules were trapped inside the cavity of these supramolecular cages (Figure S7). Similar molecular cages were also observed in the case of hexameric assemblies of resorcarenes,35 calixarenes,36 insulin,37 etc., and such cages usually act as hosts for trapping guest molecules,38 and also as molecular capsules for catalyzing certain reactions.39 Thus, crystal structure of Ag\textsubscript{29}-DB18C6 may be described as a “lattice inclusion compound” or “lattice clathrate”,40 where guest molecules (crown ether hexamers) get crystallized in the

Figure 2. Crystallographic packing of (A) I and (B) Ag\textsubscript{29}T, viewed from y-axis.
interstitial spaces of the host lattice (Ag$_{29}$T) and depending on the size of the guest molecules, expansion of the crystal lattice occurs. Such a phenomenon was not observed earlier in the case of nanoclusters.

In the structure of I/II, two types of host-guest interactions may be visualized: first, at the molecular level where crown ethers trap Na$^+$ and secondly, complexation of these crown ethers with the cluster, where the cluster can be considered as a colloidal-level molecule. Moreover, from the packing of Ag$_{29}$-DB$_{18}$C$_6$, it is evident that Ag$_{29}$ clusters and DB$_{18}$C$_6$ molecules show hierarchical assembly in their crystal lattice. While the lattice of the cluster acts as a host for trapping the crown ether cages, these cages further act as a host for trapping water as the guest molecules. Further, the cages themselves are formed by self-organization of six DB$_{18}$C$_6$Na$^+$ units and each DB$_{18}$C$_6$Na$^+$ unit is formed by the capture of Na$^+$ in the cavity of DB$_{18}$C$_6$. In the crystal lattice, there are cluster—cluster, crown ether—crown ether, and cluster—crown ether interactions. Supramolecular forces guide the assembly behavior at each level. The packing patterns represent an emerging phenomenon in nanoscience where simple building blocks evolve into complex architectures with new features that are not manifested in individual entities.

We compared the emission from both Ag$_{29}$-DB$_{18}$C$_6$ and Ag$_{29}$T to understand the effect of the noncovalent interactions on their solid-state luminescence. Though the density of the particles in Ag$_{29}$-DB$_{18}$C$_6$ (\sim1.85 gm cm$^{-3}$), was slightly less compared to the density in the lattice of Ag$_{29}$T (\sim2.041 gm cm$^{-3}$), there was \sim3.5 fold enhancement in the luminescence of the former (excitation at 532 nm). Details of the luminescence measurements and calculation of enhancement factors are discussed under the experimental section in the Supporting Information. Dense packing of the ligands in the case of Ag$_{29}$-DB$_{18}$C$_6$ resulted in greater rigidity and restriction of the intramolecular rotations of the TPP ligands which caused an enhancement of the radiative transitions16,41,42 compared to the lattice of Ag$_{29}$T. Ion pairing effects of the negatively charged clusters with the positively charged DB$_{18}$C$_6$Na$^+$ in their crystal may have also contributed to the enhancement of the luminescence.43 The slight red shift and broadening in the emission spectrum of Ag$_{29}$-DB$_{18}$C$_6$ may be attributed to changes in electronic coupling and electron-phonon interactions42 in the two crystals. Despite the structural complexity of the inclusion compound (Ag$_{29}$-DB$_{18}$C$_6$), the uniformity in the properties of the single crystal makes the luminescence comparison possible. Similar phenomenon was also observed in the case of the polymorphic crystals of the cluster where the cubic polymorph (Ag$_{29}$C$_6$) exhibited a more rigid packing and higher luminescence compared to Ag$_{29}$T.16 The Ag$_{29}$-DB$_{18}$C$_6$ crystals were more luminescent compared to Ag$_{29}$C (density \sim 2.11 g cm$^{-3}$) too (Figure S8). However, when Ag$_{29}$-DB$_{18}$C$_6$ crystals were dissolved in DMF, there was no change in the emission compared to the solution-phase emission of the parent Ag$_{29}$ clusters (Figure S9A), which further supported that the enhancement was due to the strong intermolecular interactions in the crystalline state and in solution-phase such intermolecular interactions were lost due to random arrangement of the molecules. The optical absorption features were also unchanged compared to that of the parent cluster (Figure S9B), which suggested weak interaction between the molecules in solution.

Figure 3. (A) Packing of DB$_{18}$C$_6$Na$^+$ molecules into hexameric units throughout the crystal lattice, view from the y-axis. (B) Expanded view of one of the hexameric units (circled in yellow in A) showing the formation of cage-like structures. Opposite crown ethers, shown in similar colors, are related by a center of inversion. (C) The orientation of the Na$^+$ of the crown ether hexamer in a rectangular bipyramidal geometry.
its lattice. The crystals of the coassembly of Ag$_{29}$ with DB18C6 incorporation of DB18C6 hexamers in the interstitial spaces of exhibited greater luminescence compared to the crystals of the anisotropic expansion of the parent Ag$_{29}$T lattice due to the number of TPP (attached to the cluster.

To understand the nature of solution-phase complexation, we dissolved the Ag$_{29}$-DB18C6 crystals in DMF and analysed these by ESI MS. In the negative ion mode, the adducts, [Ag$_{29}$(BDT)$_{12}$(TPP)$_{n}$(DB18C6)$_{m}$]$^{3-} \ (n = 0–4, \ m = 0–3)$ were detected (Figure 5). The peaks are labelled with (n, m).

indices. As the TPP ligands were labile and DB18C6 molecules were noncovalently bound, they were detached from the cluster during ionization. This complicated the exact quantification of the adducts and the abundances of the species could not be compared with their occupancy in the crystal structure. However, a maximum of three DB18C6 molecules was found to be attached to the cluster with varying number of TPP ligands. Moreover, in the positive ion mode, the species, DB18C6Na$^+$ was detected (Figure S10). This suggested the existence of two types of equilibria in solution: (i) attachment of neutral DB18C6 to the cluster and (ii) capture of Na$^+$ by DB18C6. Both these processes contributed to the crystallization of Ag$_{29}$-DB18C6.

In summary, we crystallized a supramolecular coassembly of Ag$_{29}$ and DB18C6 molecules. The structure showed an anisotropic expansion of the parent Ag$_{29}$T lattice due to the incorporation of DB18C6 hexamers in the interstitial spaces of its lattice. The crystals of the coassembly of Ag$_{29}$ with DB18C6 exhibited greater luminescence compared to the crystals of the parent Ag$_{29}$T. This supramolecule may find application as a luminescent probe for selective cation sensing. The hexameric cages of crown ethers in the crystal lattice may also be utilized for trapping gases or other suitable guest molecules. Similar interactions may also be explored for a range of different clusters and crown ethers. The crystallization of such supramolecular assemblies of clusters unfolds a new direction in nanoparticle engineering and such functional materials may show enhanced optical and mechanical properties. By choosing the appropriate crown ether, cluster assembled liquid crystalline phases may be created, which may find applications in optoelectronic devices. As crown ethers are sensitive to all alkali metal ions, others, such as Li$^+$, may be incorporated in the nanoparticle assemblies and these modified materials may find applications in electrochemical devices. Noble metal cluster assemblies assisted by crown ethers are expected to enhance the area.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmaterialslett.9b00352.

Materials and methods, crystal structure data, optical absorption and emission, and ESI MS (PDF)

Crystallographic information file for Ag$_{29}$-DB18C6 (CIF)

AUTHOR INFORMATION

E-mail: pradeep@iitm.ac.in.

ORCID

Thalappil Pradeep: 0000-0003-3174-534X

Notes

The authors declare no competing financial interest.

CCDC 1888965 contains the crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

ACKNOWLEDGMENTS

P.C. thanks the Council of Scientific and Industrial Research (CSIR) for a research fellowship. A.N. and T.A. thank IITM for their fellowship. K.S.S. thanks the University Grants Commission (UGC) for her fellowship. We thank the Department of Science and Technology, Government of India, for continuously supporting our research programme. We thank the Sophisticated Analytical Instruments Facility, IITM, for SCXRD data collection. Authors thank Dr. Sudhadevi Antharjanam for useful discussions on the SCXRD data.

REFERENCES

