Lecture 18
Applications of Auger spectroscopy
Relaxation occurs as a result of core hole emission
The change of LS – jj coupling schemes

Configurations

\[2s^02p^6 \quad KL_1L_1 \quad 1s2s2s \]
\[2s^12p^5 \quad KL_1L_2 \quad 1s2s2p_{1/2} \]
\[KL_1L_3 \quad 1s2s2p_{3/2} \]
\[2s^22p^4 \quad KL_2L_2 \quad 1s2p_{1/2}2p_{1/2} \]
\[KL_2L_3 \quad 1s2p_{1/2}2p_{3/2} \]
\[KL_3L_3 \quad 1s2p_{3/2}2p_{3/2} \]

Figure 2.1. Coupling between final atomic vacancy states following a KLL transition for different Z. (Reprinted with permission of Wiley-Interscience, New York.)
Details of the electronic structure can be studied.

Figure 2.2. Auger 3P peaks of argon in the gas phase by electron impact. (Reprinted with permission of American Chemical Society, Washington.)
Variation in intensity with change in excitation

Figure 6.6. Aluminum LVV and KLL first-derivative Auger spectra under electron (5 keV), x-ray (1254 eV), and ion (5 keV argon) irradiation. The x-ray-induced spectrum is displaced slightly on the energy axis to avoid confusion. The main features to note are: (i) Relatively weak x-ray-induced Auger emission. The KLL features are excited, not by the 1254-eV radiation, but by the background bremsstrahlung component of the x-ray spectrum. The LVV features are very weak due to the low photoionization cross section of the aluminum L levels at 1254 eV. (ii) The absence of KLL Auger features in the ion-induced spectrum. The ion-induced LVV feature, however, is very intense and different in structure to the corresponding electron-induced feature.
Manifestation of change in electronic structure

Figure 6.7. Pd $M_{4.5}N_{4.5}N_{4.5}$ Auger spectra from Pd, Al$_{0.8}$Pd$_{0.2}$, and Mg$_{0.75}$Pd$_{0.25}$, showing bandlike structure in the element, and atomic-like structure in the alloys. (Reproduced with permission from Reference 140. © Institute of Physics.)
Figure 6.11. (a) Secondary-electron image and (b) chromium Auger map of 304 stainless steel oxidized in 0.05 torr O₂ at 800 C, showing chromium enrichment at grain boundaries. (Reproduced with permission from Reference 316, © North-Holland Publishing Company.)
Depth profiling

Figure 6.13. Typical ball-cratered composition-depth profile through a 33-μm electrode-deposited zinc coating on mild steel. (A) Scanning electron micrograph of the crater generated by a 36-mm ball. Total crater diameter 2.41 mm. (B) Composition-depth profile through the coating, generated by performing point analyses down the side of the crater wall. (Reproduced with permission from Reference 57, © Wiley-Heyden Ltd.)
Auger spectra can be collected in the normal mode as well.

Figure 5.11 Differential and direct electron spectra from contaminated copper
In order to do quantitative analysis, one needs to correct the background.
Depth profiling is an important aspect of Auger spectroscopy. The depth resolution can be as high as 50 nm.