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Need for statistical thermodynamics
Microscopic and macroscopic world
Distribution of energy -

 
population

Principle of equal a priori
 

probabilities

Configuration  -
 

instantaneous
n1

 

, n2

 

,…molecules exist in states with energies ε1

 

, ε2

 

,…
N is the total number of molecules
{N,0,0,…} and {N-2, 2,0,…} are configurations 
Second is more likely than the first

{1,1}, {2,0}, {0,2}
Weight of a configuration = how many times 

the configuration can be reached.

Various forms of energies.

Statistical thermodynamics L1-L3

Lectures 11, 12, 13 of CY101

Ref. Atkins 7th

 

or 8th

 

edition
Alberty, Silbey, Bawendi 4th

 

edition



Energy

0

A configuration {3,2,0,0,..} is chosen in 10 different ways
How about a general case of N molecules?

A configuration {N-2,2,0,0,…}
First ball of the higher state can be chosen in N ways, because there are N balls
Second ball can be chosen in N-1 ways as there are N-1 balls
But we need to avoid A,B from B,A.
Thus total number of distinguishable configurations is, ½

 

N(N-1)  

W = N!       
W is the weight of the configuration.

How many ways a configuration can be achieved.

n0

 

!n1

 

!n2

 

!....

1 2 3 4 5 6 7 8 9 10

N! ways of selecting balls
n0

 

! for the balls in first level, n1

 

! for the second, etc.



ln W = ln  N!
n0

 

! n1

 

! n2

 

!...

= ln N!-
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! n2

 

!..)

=ln N! -(ln n0

 

! +ln n1

 

! +ln n2
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=ln N! -Σi

 

ln ni
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ln x!≈

 

x ln x-x

 

Stirling’s approximation

ln W = (N ln N -

 

N)

 

-

 

Σi

 

(ni

 

ln ni
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ni

 

) = N ln N –Σi

 

ni

 

ln ni

Better to use natural logarithm



ni
N

= e -βεi
Σi

 

e -βεi

β

 

= 1
kT

Which is the dominating configuration having maximum 
weight?

Generalised approach is to set dW = 0

There are problems as any configuration is not valid.

1. Energy is constant.  Σi ni  εi  = E

2. Constant molecules. Σi

 

ni

 

= N

Boltzmann distribution

Lagrange, method of undetermined multipliers 
A constraint should be multiplied by a constant and then added to the variation equation

Populations in the 
configuration of greatest 
weight depends on the 
energy of the state.

i is a sum over available states

W

ni

Temperature gives the most probable populations



pi

 

= e -βεi
q

q =Σ

 

levels i

 

gi

 

e-βε
i

q =Σi e -βεi

lim T→0

 

q = g0

lim T→ ∞

 

= ∞

There are several ways of looking at i

How to look at partition functions?

Look at limiting cases

1. Partition function is the number of available states.
2. Partition function is the number of thermally accessible states.

3. How molecules are ‘partitioned’

 

into available states.

How to look at thermodynamic properties?

Molecular partition function

Because, ε0

 

= 0
For all higher levels ε

 

is finite.
e-βε

 

=1. e-x

 

is 0 when x is ∞.

Boltzmann distribution –

 

population,

All terms will reduce to 1. 
e-x

 

is 1 when x is 0When number of states is finite, 
we will not get ∞.

Another form of q:



Evaluation of molecular partition function

1 + x + x2

 

+ x3

 

+ ….= 1/(1-x)

q = 1 + e –βε

 

+ e –2βε

 

+  e –3βε

 

+…= 1 + e –βε

 

+ (e –βε)2

 

+  (e –βε)2

 

+…=1/(1-

 

e –βε)

Fraction of molecules in energy levels is,
pi

 

= e –βεi

 

/q =  (1-

 

e –βε) e –βεi

Discussion of figure, next slide

For a two level system,

po

 

= 1/(1 + e –βε)  
p1

 

= e –βε/q =  e –βε/ (1+ e –βε)

As T  ∞, both po

 

and p1

 

go to ½.

p

ε

0

ε
2ε

Consequences?



Low temperature High temperature



qx

 

= 2╥

 

m
h2β X

1/2

En

 

= n2h2 

8 mX2 n =1,2….

εn

 

= (n2-1)ε ε

 

=
h2

8mX2

qx

 

= Σ∞n=1

 

e -(n2-1)βε

qx

 

= ∫∞1

 

e -(n2-1)βε

 

dn  energy levels are close,  sum becomes an integral

qx

 

= 1
βε

1/2

∫0∞

 

e -x2dx = 1
βε

1/2 ╥

 

1/2

2 =
2╥m
h2β

1/2
X

Approximations: Partition functions are often complex. Analytical expressions 
cannot be obtained in several cases. Approximations become very useful. 
For example, partition function for one dimensional motion

No big difference, if we take the lower limit to 0 and replace n2-1 to n2.

Substitute, X2

 

= n2βε, dn = dx/(βε)1/2 Substitute for ε



q =Σ

 

all n

 

e -βε(X)
n1

 

–βε(Y)
n2 

-βε(Z)

 

n3

= Σn1 e-

 

βε(X)
n1 Σn2

 

e -βε(Y)

 

n2 Σn3

 

e -βε(Z)

 

n3

= qx

 

qy

 

qz

q = 2╥m
h2β

3/2

XYZ

q = V
�3 � = h

β
2╥m = 

h
(2╥mkT)1/2

1/2
� has dimensions of length, 
thermal wavelength

J =kg m-2

 

s-2

εn1n2n3

 

= εn1 
(X)

 

+ εn2 
(Y)

 

+εn3 
(Z)  Energy is a sum of independent terms

Independent motion in three dimensions

Question: How many more quantum states will be accessible for 18O2

 

compared to 
16O2

 

, if it were to be confined in a box of 1 cm3?



E = - N
q

Σi
d

dβ
e –βεi

 

=-N
q

d
dβ

Σi

 

e-βεi=
N
q

dq
dβ

U = U(0) + E 

U = U(0) -N
q

∂q
∂β v

U = U(0)-

 

N ∂lnq
∂β v

E = Σi

 

ni

 

εi

E =
N
q Σi

 

εi

 

e-βεi

εi

 

e –βεi

 

= - d
dβ

e-βεi

How to get thermodynamics?
All information about the thermodynamic properties of the system

 

is  contained 
in the partition function. Thermal wavefunction.
Total energy

Most probable configuration is dominating.
We use Boltzmann distribution. 

We know,

1.

 

All E’s are relative
E is the value of U relative to T = 0.

2. Derivative w.r.t.  β

 

is partial 
as there are other parameters 
(such as V) on which energy 
depends on.

Partition function gives internal energy of the system.



Statistical entropy

S = k ln W

W is the most probable configuration of the system.

ln W = N ln N –Σi

 

ni

 

ln ni

N = Σi

 

ni

S = k Σi (ni

 

ln N –Σi

 

ni

 

ln ni )
= -

 

k Σi ni

 

ln ni /N
=-

 

Nk Σi  pi

 

ln pi
pi

 

= ni

 

/N

ln pi

 

=  -βεi

 

–

 

ln q    [definition of pi

 

]

S = -Nk(-β Σi  pi

 

εi

 

–

 

Σi  pi

 

ln q)=  -kβ

 

[U –

 

U(0)] + Nk ln q

We used, Σi  pi = 1 and NΣi  pi

 

εi

 

= Σi  Npi

 

εi  = Σi  ni

 

εi   = E

S =  1/T[U –

 

U(0)] + Nk ln q

Partition function is the number of thermally 
accessible states.
Entropy is the distribution of energy
The two must be related 



Closed System

Canonical Ensemble: Imaginary 
replication of the closed system in    

different microstates 
corresponding to the same 

macrostate “N, V, T”

Total energy of the isolated ensemble is constant.

Canonical partition function

Particles are interacting.
Concept of ensemble

N molecules, Ń

 

imaginary replications
Number of members in the state with 
energy Ei

 

is ńi

 

. Total energy of all the 
replications Ė

Microcanonical Ensemble: Imaginary replication of the isolated 
system  in      microstates corresponding to the same macrostate

 

“N, V, E”
Grand canonical Ensemble: Imaginary replication of the isolated 
system  in      microstates corresponding to the same macrostate

 

“μ, V, T”



Ẃ

 

=   Ń

 

!
ń0

 

! ń1

 

! ń2

 

!...

ńi
Ń

= e -βEi

Σi

 

e -βEi

Q is called cannonical partition function.
Q is more important than q as the former talks about 
interacting particles.

Q = Σi

 

e -βEi

Dominating configuration
{ń0,

 

ń1….

 

} has a weight, Ẃ

Configuration of greatest weight, with conditions of total energy, Ė

 

and number of 
members, Ń

 

is called cannonical distribution.

Total energy of the ensemble is E and there are Ń

 

members. Average energy of a 
member, E is Ė/ Ń. Let us calculate U when Ń

 

(and therefore Ė) reaches infinity.

U = U(0) + E = U (0) + Ė/ Ń Ń ∞



ńi
Ń

= e -βEi

Q

The fraction, ṕi

 

of members of the ensemble in state i with energy Ei  is, 

ṕi

 

=

Internal energy, U = U(0) + E = U(0) +  Σi

 

ṕi Ei

 

= U(0) + 1/Q Σi

 

Ei

 

e -βEi

U =U(0) - 1
Q

∂Q
∂β v

U = U(0)  - ∂lnq
∂β v

Entropy

Weight of a configuration, Ẃ

 

of the ensemble is the product of the average 
weight W of each member within the ensemble so that, Ẃ =WŃ

S = k ln W = k ln Ẃ1/Ń

 

=

 

(k/ Ń) ln Ẃ

This as in the case of molecular partition function, S = 1/T[U –

 

U(0)] + k ln Q
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Molecular partition function and cannonical partition function

When molecules are independent, total energy of state, i is 
Ei = εi

 

(1) + εi(

 

2) +

 

εi

 

(1) +…

 

+ εi(

 

N)
εi

 

(1) is the energy of molecule 1 for the system is in state i. Sum is for all the N 
molecules constituting the state i.

  ieq 

NqQ 

Instead of summing over states of the system, we can sum over all the states, i of the 
molecules 1, 2, 3….



N
habledistinguis qQ 

!NqQ N
ishableindistingu 

Nq
!N

Q 1
 Single species, ideal gas

Limitations

This discussion was for molecules which are distinguishable. Every possible 
state of individual molecule is counted in determining Q. But this is not the case 
when molecules are alike. In such cases, several  states are counted in excess. 
The correction factor is N!, the number of permutations possible

 

for a N 
member system to create a state.

What is distinguishable:  Similar molecules in the lattice as each one can be 
assigned a coordinate
Indistinguishable: Even when they are similar as in rare gases



Sackur-Tetrode equation

S = 1/T[U –

 

U(0)] k ln Q  distinguishable molecules

Q = qN/N!  indistinquishable molecules

S = 1/T[U –

 

U(0)] + Nk ln q –

 

k ln N!

Number of molecules is large, N = nNA as well as Sterling approximation

S = 1/T[U –

 

U(0)] + nR ln q –

 

nR ln N + nR

S = 3/2nR + nR [ln V/Λ3

 

–

 

ln nNA

 

+ 1] = nR [ln e3/2

 

+ ln V/Λ3

 

–

 

ln nNA

 

+ ln e]

S = nR ln [e5/2V/nNA

 

�3]

Gas is perfect. V = nRT/p
Equation can be expressed in terms of pressure.

Implications: Higher molar mass –

 

higher entropy
Expansion of gas leads to grater entropy. ΔS = nR ln aVf –

 

nR ln aVi

 

= nR ln Vf

 

/Vi
Same as classical.                       a is a collection of terms

q = 
V
�3

� = h
β
2╥m = 

h
(2╥mkT)1/2

1/2

U = U(0) + 3/2 nRT
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1. Helmholtz function

A = U –

 

TS  which means A(0) = U(0) 

A -

 

A(0) = -kTInQ

Relations for various thermodynamic quantities

Substitute Q = qN

 

or qN/N! as in the case may be.

U and S relate to other functions. A = U-TS
dA = dU-TdS-SdT

dU = TdS –

 

pdV  + Σ μi dni
dA = -SdT –

 

pdV + Σ μi dni
p = -(∂A/ ∂V)T,ni
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Valid for all substances.
This is a relation between p, V, T amount of substance. An equation of state.

Equation of state for independent particles:

p = kT (∂lnQ/∂V)T

 

= kT (∂ln(qN/N!)/∂V)T = NkT/q

 

(∂q/∂V)T  (1)

= (NkTΛ3/V) (1/Λ3) = NkT/V = nRT/V     (2)

For (1) we have used, Q =qN/N! 
For (2) (∂q/∂V)T

 

= (∂(V/Λ3)/∂V)T

 

=  1/

 

Λ3

 

and NkT = nNA

 

kT = nRT

3. Enthalpy

H = U + pV

2. Pressure

p = -(∂A/ ∂V)T
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4. Gibbs free energy

G = H –

 

TS = A + pV  =  A + nRT
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Q = qN/N!     ln Q  = N lnq –

 

ln N! = N lnq –

 

(N lnN –

 

N)

Gibbs free energy is proportional to the logarithm of the average number of 
thermally accessible states.

N = nNA   

We can also define a molar partition function, qm

 

= q/n
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Trans               Rot                Vib               Elec

q=Σi

 

e-βεi=Σi (all states)

 

e-βεiT-βεiR-βεiV-βεiE

εi

 

= εi
T+εi

R+εi
V+εi

E

Molecular partition function

1. Translational



qR=ΣJ
 

(2J+1)e-βhcBJ(J+1)

qR
R

T
hcB
kT


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2. Rotational

For linear rotors (A-B),

R

T
hcB
kT



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qR

qR

hcB
kT




Characteristic rotational temperature
T>>ΘR

Linear, symmetric molecules
A-A, counting states twice

CH=CH

σ

 

Symmetry number



qR= ∫∞0

 

(2J+1)e-βhcBJ(J+1)dJ

We can simplify

d/dJ [eaJ(J+1)] = d/dJ [aJ(J+1)] eaJ(J+1)

 

= a(2J+1)eaJ(J+1)

qR = (1/βhcB) ∫∞0

 

d/dJ [e-βhcBJ(J+1)] dJ

qR =  -
 

(1/βhcB) [e-βhcBJ(J+1)]
 

∞
0 = 1/βhcB  

= kT/ hcB
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3. Vibrational
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4. Electronic

qE

 

= gground

 

= 1

NO …π1

Gives 2Π1/2

 

and 2Π3/2
Each state is doubly degenerate
Gap is small between these  two

qE =Σlevels

 

gE

 

e-βε
i

 

= 2 + 2e-βε

Leads to occupancy in all the states.
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Using statistical theromodynamics

Mean energies

Mean energy for each mode, M

Rest of the material in this file is as in Atkins.



(a)  The mean translational energy
One–dimensional system of length X, for which qT = X/Λ, with Λ = 
h(β/2m)1/2 . Λ is a constant times β1/2 



For a molecule free to move in three dimensions:

Classical equiparition theorem 
1. Mean energy of each quadratic contribution to the energy is 
1/2kT
2. Mean energy is independent of the size of the container
3. Consistent with the thermodynamic result that the internal 
energy of a perfect gas is independent of its volume



(b) The mean rotational energy

When the temperature is low (T < θR

 

), we get:

Hence



At high temperature (T >> θR), qR

 

is given by qR

 

= T/2θR

(qR

 

is independent of V, so the partical derivatives have been replaced 
by complete derivatives).

The high-Temperature result is also in agreement with th
 

e 
equipartition theorem, for the classical expression for the energy of a 
linear rotor is EK

 

= 1/2Іωa
2

 

+ 1/2Іωb
2

 

= 2 x ½

 

kT = kT



(c)  The mean vibrational energy

and hence from



At high temperatures, when T >> θv

 

, or βhcv << 1, the exponential 
function can be expanded (ex = 1 + x + ….) and all but the leading 
terms are discarded. 



This result is in agreement with the value predicted by the 
classical equipartition theorem, because the energy of a one –
dimensional oscillator is E =1/2mv2

x + 1/2kx2 and the mean energy
 

 
of each quadratic term is 1/2kT.

Heat capacities

The constant-volume heat capacity is defined as Cv = (U/T)v . 
The derivative with respect to T is converted into a derivative 
with respect to β by using:



Because the internal energy of a perfect gas is a sum  of 
contributions, the heat capacity is also a sum of contribution from 
each mode. The contribution of mode M is,



The individual contributions

The temperature is always high enough (provided the gas is above
 its condensation temperature) for the mean translational energy to 

be 3/2 kT, the equipartition value. Therefore, the molar constant-
 volume heat capacity is: 

CP- CV

 

= R
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