Lecture 2
Clausius Inequality
Assume reversible and irreversible paths between two states. Reversible path produces more work.
\(dU\) is the same for both the paths.

\[
dU = dq + dw = dq_{\text{rev}} + dw_{\text{rev}}
\]

\[
dq_{\text{rev}}/T \geq dq/T
\]

\[
dS \geq dq/T \quad \text{Clausius inequality}
\]

System is isolated.

\[
dS \geq 0 \quad \text{Clausius inequality}
\]
Equilibrium Process

Entropy

Equilibrium

Process
Spontaneous processes entropy increases.

“Entropy is Time’s Arrow”

Arthur Stanley Eddington (1882-1944)
How do we derive conditions for equilibrium and spontaneity?

For an isolated system
\[\Delta S \geq 0, \] > sign for a spontaneous process and = for equilibrium.

In the case of open or closed system, there are two ways

1. Evaluate \(\Delta S \) for systems and surroundings.
\[\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} \]

\[\Delta S \geq 0 \]
2. Other way is to define entropy change of the **system** alone.

\[dS_{\text{Total}} = dS_{\text{System}} + dS_{\text{Surroundings}} \]

\[dS - \frac{dq}{T} \geq 0 \quad \text{Clausius inequality} \]

Consider constant volume:

\[dS - \frac{dU}{T} \geq 0 \]

\[TdS \geq dU \quad \text{(constant } V \text{ and so no work due to expansion)} \]

At constant \(U \) or at constant \(S \), the expression is:

1. \(dS_{U,V} \geq 0 \)
2. \(dU_{S,V} \leq 0 \)

Criterion of spontaneity 1. is the common statement of second law.
2. For spontaneity, entropy of the surroundings must increase for which \(U \) of the system has to decrease.
3. At constant pressure,
\(TdS \geq dH \)

1. \(dS_{H,P} \geq 0 \)
2. \(dH_{S,P} \leq 0 \)

Interpretations are the same.

The inequalities mean,
\(dU - TdS \leq 0 \)
\(dH - TdS \leq 0 \)

We define,
A = \(U - TS \) Helmholtz energy
G = \(H - TS \) Gibbs energy
Hermann von Helmholtz
Born: 31 Aug 1821 in Potsdam, Germany
Died: 8 Sept 1894 in Berlin, Germany
What is A?

\[dU = dq + dW \quad - \text{First law} \]
\[TdS \geq dq \]

\[dU \leq TdS + dW \]

\[dW \geq dU - TdS = dA \]

Most negative value of W is W_{max} and that is equal to dA.

Under constant T and V can the system do work?

A is not defined only for this condition!!
\[G = H - TS \quad H = U + PV \quad dH = dq + dw + d(PV) \]
\[= U + PV - TS \]
\[dG = dH + - TdS - SdT \]
\[= dq + dw + d(PV) - TdS - SdT \]

At constant temperature,
\[= TdS + dw_{rev} + d(PV) - TdS = dw_{rev} + d(PV) \]
\[dw_{rev} = -PdV + dw_{\text{additional}} \]
\[dG = dw_{rev} + d(PV) = -PdV + dw_{\text{additional}} + PdV - VdP \]

\[dG = dw_{\text{additional}} - VdP \quad \text{Work function} \]

At constant P and T,
\[dG = dw_{\text{additional}} \quad \text{Carnot limitation} \]

Decrease in free energy, \(\Delta G \), at constant temperature and pressure corresponds to the maximum work other than the P – V work that the system is capable of doing under reversible conditions.
Conditions of equilibrium

\[
(dS)_U, q \geq 0 \\
(TdS)_U, V \geq 0 \\
(dA)_T, V \leq 0 \\
(dG)_T, P \leq 0
\]
If there is other work in addition to P – V work,

\[TdS_{\text{system}} - [dU_{\text{system}} + PdV_{\text{system}} + dw_{\text{other}}] \geq 0 \]

Combined law

Now conditions for spontaneity and equilibrium can be found out by subjecting it to various conditions.
G is a function of P and T

\[G = f(P, T) \]

\[dG = \left(\frac{\partial G}{\partial P} \right)_T \, dp + \left(\frac{\partial G}{\partial T} \right)_P \, dT \tag{1} \]

\[G = H - TS \]

\[= U + PV - TS \]

\[dG = dU + PdV + VdP - TdS - SdT \]

\[dU = TdS - PdV \]

\[dG = VdP - SdT \tag{2} \]

Comparing 1 and 2

\[\left(\frac{\partial G}{\partial P} \right)_T = V \]

\[\left(\frac{\partial G}{\partial T} \right)_P = -S \]

One component system
Variation of G with T

\[(\partial G / \partial T)_P = -S \]
Variation of G with P

\[(\frac{\partial G}{\partial P})_T = V \]
S and V are always positive quantities. G should increase with P at constant temperature and decrease with temperature at constant pressure. For a finite change in free energy at constant temperature,

\[\int_{P_1}^{P_2} dG = \int_{P_1}^{P_2} V dP \]

For solids and liquids, the volume change will be small and

\[\Delta G = V \Delta P \]

Such changes in free energy are very small.

For gases, since volume change is large, \(\Delta G \) is large.

\[\int_{P_1}^{P_2} dG = \int_{P_1}^{P_2} nRT/P \ dP = nRT \ln P_2/P_1 \]

This relation shows that G is (1) extensive and (2) a state function. \(\Delta G \) for a change \(1 \rightarrow 2 \) is the same whether the change of state is carried out reversibly or irreversibly.

\[G_m(P) = G^o_m + RT \ln P/P^o \]
Gibbs-Helmholtz equation

ΔG_f° values predict the feasibility of a reaction at 298 K. ΔG values at any temperature can be calculated by Gibbs - Helmholtz equation.

$$\Delta G = \Delta H - T\Delta S$$

$$\left(\frac{\partial G}{\partial T}\right)_P = -S$$

$$\left(\frac{\partial \Delta G}{\partial T}\right)_P = -\Delta S$$

$$\Delta G = \Delta H + T \left(\frac{\partial \Delta G}{\partial T}\right)_P$$

(1)

ΔG can be evaluated from emf measurement since $\Delta G = -nFE$

Where n = number of electrons evaluated, $F = $ Faraday, $E = $ potential of the cell. $F= 96500$ Coulombs/gm. equiv.
Divide eqn. 1 by $-T^2$

$$-\Delta G/T^2 + 1/T \left(\partial \Delta G/\partial T \right)_P = -\Delta H/T^2$$

Write $-1/T^2$ as $\partial/\partial T (1/T)$

$$\Delta G \left[\partial/\partial T (1/T) \right]_P + 1/T \left(\partial \Delta G/\partial T \right)_P = -\Delta H/T^2$$

$$\{UdV + VdU = d(UV)\}$$

$$\left[\partial/\partial T (\Delta G/T) \right]_P = -\Delta H/T^2$$

Helmholtz equation:

$$\left[\partial/\partial T (\Delta A/T) \right]_P = -\Delta U/T^2$$