Important Note: Answer questions from 1 to 18 (Part 1) in the space provided in the question paper itself and hand over this sheet of the question paper to the invigilator.

Boltzmann constant, \(k = 1.380658 \times 10^{-23} \text{ J K}^{-1} \); Gas constant, \(R = 8.314 \text{ JK}^{-1}\text{mol}^{-1} \); Planck constant, \(h = 6.626 \times 10^{-34} \text{ Js} \); Avogadro Number, \(N_A = 6.022 \times 10^{23} \)

Questions from 1 to 18 carry 1 mark each

1. Assume that one mole of a gas in an isolated system is expanded to twice its original volume. The probability that all the molecules remain in the original space is __________.

 \[(a) \left(\frac{1}{2} \right) \left(\frac{6.022 \times 10^{23}}{2} \right) \quad (b) \left(2 \right) \left(\frac{6.022 \times 10^{23}}{2} \right) \quad (c) \left(\frac{1}{2} \right) \quad (d) \frac{0.5}{6.022 \times 10^{23}} \]

 Ans.: a

2. At absolute zero, the entropy of \(N_2O \) is greater than zero.
 True (T) / False (F)?
 Ans.: T

3. The relation, \(dG = VdP - SdT \) is valid for a two component system in the solid state.
 T/F?
 Ans.: F

4. The reaction, \(\text{CaCO}_3(\text{Solid}) = \text{CaO}(\text{solid}) + \text{CO}_2(\text{gas}) \) was at equilibrium. How many degrees of freedom are there when \(\text{CaO} \) was removed from the system?
 Ans.: 2

5. Adsorption has an activation barrier. T/F?
 Ans.: T

6. For a second order reaction \(2A \rightarrow \text{products} \), when \([A]_0\) is reduced by a factor of 2, the half life doubles. T/F?
 Ans.: T

7. Multilayer adsorption is generally physisorption. T/F?
 Ans.: T

8. Generally, multiple adsorption sites are expected for dissociative adsorption.
 T/F?
 Ans.: T

9. The entropy of activation will always be positive. T/F?
 Ans.: F
10. Langmuir adsorption isotherm can be used to find out the surface area of a substrate.
 T/F?
 Ans.: T

11. For a first order reaction, the amount of the reactant disappears in 3\(t_{1/2}\) is ___
 Ans.: \(A_0/8\)

12. The overall rate coefficient (\(k_{overall}\)) of a composite reaction involving two elementary steps
 with rate constants, \(k_1\) and \(k_2\), is given by the expression \(k_{overall}=k_1/k_2\). Express the overall
 activation energy, \(E_{overall}\) in terms of the activation energies \(E_1\) and \(E_2\) for the elementary
 steps.
 Ans.: \(E_1-E_2\)

13. Steady state approximation is used only when equilibrium is involved between the reactants
 and the intermediate species. T/F?
 Ans.: F

14. For a reaction, \(A + B \rightarrow \text{products}\), if \([A] >> [B]\), the reactant with lower concentration
 determines the order of the reaction. T/F?
 Ans.: T

15. There are equations of state applicable to all states of matter. T/F?
 Ans.: T

16. As the \(\Delta G^0\) for a reaction changes from a large negative to a large positive value, \(K\) of the
 reaction will change from a large positive to a large negative value. T/F?
 Ans.: F

17. The rate of a spontaneous chemical reaction can be affected by removing some products.
 T/F?
 Ans.: F

18. For a zero order reaction, the plot of rate vs concentration has a positive slope. T/F?
 Ans.: F
Questions from 19 and 20 carry 2 marks each

19. Supposedly, a supramolecular system (an assembly of molecules) has 5×10^8 individual molecules, which can arrange in four different ways. If each arrangement was a random choice of one of these four possibilities, what would be the residual entropy associated with the system?

\[S = k \ln \Omega = k \ln 4^{5 \times 10^8} = 5 \times 10^8 k \ln 4 = 9.57 \times 10^{-15} \text{ J} / \text{K} \]

20. What is the energy separation at 623 K between the levels in a two level system when the population of the upper state is one half of the lower state?

\[\frac{n_2}{n_1} = e^{\frac{(\varepsilon_2 - \varepsilon_1)}{kT}} \quad (\varepsilon_2 - \varepsilon_1) = -Tk \ln \frac{n_2}{n_1} = 0.5959 \times 10^{-20} \text{ J} \]

Questions from 21 to 29 carry 3 marks each

21. Plot a graph, showing the variation in chemical potential, μ, with T for a pure solid undergoing complete sublimation.
22. The rate constant for the decomposition of N\textsubscript{2}O\textsubscript{5} (N\textsubscript{2}O\textsubscript{5} \rightarrow N\textsubscript{2}O\textsubscript{4} + 1/2O\textsubscript{2}) is 5.2\times10^{-5} \text{ s}^{-1} at 25 ^\circ \text{C} and 8.2\times10^{-3} \text{ s}^{-1} at 75 ^\circ \text{C}. Calculate the activation energy (E\textsubscript{a}) of the reaction.

\[k_1 = Ae^{-E_a/RT_1} \] (1) and \[k_2 = Ae^{-E_a/RT_2} \] (2)

(1)/(2) leads to \[\ln \frac{k_1}{k_2} = \frac{E_a}{RT_2} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \] Solve for E\textsubscript{a}. Ans: 87.884 kJ/mol

23. Suppose the transformation of A to B occurs either by:

(i) a reversible first order as: \[\textit{A} \rightleftharpoons \textit{B} \textit{k}_1 \textit{k}_2 \]

(ii) a reversible second order reaction involving H+ ion as in: \[\textit{A} + \textit{H}^+ \rightleftharpoons \textit{B} + \textit{H}^+ \textit{k}_3 \textit{k}_4 \]

Express \(k_1 \) in terms of \(k_2 \), \(k_3 \) and \(k_4 \) when these reactions are at equilibrium.

\[k_1[A] = k_2[B] \text{ hence } [A] = \frac{k_2[B]}{k_1}. \]

Similarly, \(k_3[A][\textit{H}^+] = k_4[B][\textit{H}^+] \). Substitution for A in the second equilibrium leads to \[k_3 \frac{k_2[B]}{k_1} [\textit{H}^+] = k_4[B][\textit{H}^+] \]. Canceling the identical terms on both sides will lead to the following relation. \[k_1 = \frac{k_2 k_3}{k_4} \]

24. The decomposition of N\textsubscript{2}O\textsubscript{5}, 2N\textsubscript{2}O\textsubscript{5} = 4NO\textsubscript{2} + O\textsubscript{2} is studied by measuring the concentration of oxygen as a function of time. The rate equation found is,

\[\frac{d[O_2]}{dt} = (1.5\times10^{-4} \text{ s}^{-1})[N\textsubscript{2}O\textsubscript{3}] \] at constant temperature and pressure. Under these conditions, the reaction goes to completion to the right. What is the half life of the reaction under these conditions?

From the rate constant, it is obvious that it is a first order reaction.

Thus, \[t_{1/2} = \frac{0.693}{k} = \frac{0.693}{1.5\times10^{-4}} = 0.462\times10^4 = 4620 \text{ s} \]

However, this equation is valid for A goes to product. Here, 2N\textsubscript{2}O\textsubscript{5} are decomposing per one O\textsubscript{2} formation. Hence, the \(t_{1/2} \) value becomes \(4620/2 = 2310 \text{ s} \).
25. A simple eutectic system composed of A and B has a eutectic composition of 40 wt% B and it melts at 40 °C. The melting points of A and B are 100 and 80 °C, respectively. Depict the phase diagram of this system with appropriate labels. Also, draw the cooling curve at the eutectic composition.

![Phase Diagram](image1)

26. In the photoelectron emission process with H₂ involving two electronic energy states, represented schematically below, (a) indicate the lowest ionization energy observed, (b) mark the ionization process of hydrogen atom in this energy level scheme and (c) suggest what the difference between these values correspond to? Draw these curves in your answer book to indicate the answers.

![Energy Level Diagram](image2)

Ans.: c: dissociation energy of the ionic state.
27. Represent the three distinct adsorption geometries of a molecule adsorbed on a surface shown below. Represent the molecule with an open circle, larger than the atoms shown. Only one adsorbed molecule to be shown for a given geometry. You need to reproduce the figure three times and place a molecule at the required site in each figure.

28. Plot a graph in which the vapor pressure of water is plotted against \(\frac{1}{T} \). Assume that \(\Delta H \) is independent of temperature and the vapor behaves ideally.

29. Calculate the change in boiling point of a liter of water when the pressure above was increased from 1 atm to 10 atm. The heat of vaporization is 539.7 cal/g and volume per gram of the liquid and vapour phases are 1.04 and 1680 ml, respectively at its normal boiling point.
Questions from 30 to 32 carry 6 marks each

30. The frequency of vibration of the R-X bond in molecule RX is \(5.0 \times 10^{12} \) s\(^{-1} \) at 298 K. What is the value of molecular partition function, \(q \), considering only the first 8 energy levels? (hint: energy levels are separated by \(h \nu \), where \(\nu \) is the vibrational frequency)

We can calculate the partition function by adding the \(e^{-E_i/k_BT} \) terms until the value becomes negligible. The first terms are:

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>\ldots</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^{-E_i/k_BT})</td>
<td>1</td>
<td>0.447</td>
<td>0.20</td>
<td>0.090</td>
<td>\ldots</td>
<td>0.002</td>
</tr>
</tbody>
</table>

The sum of these is 1.8 and is a good approximation to the partition function \(q \).

31. The equilibrium constant for an association reaction, \(A + B \rightleftharpoons AB \) is \(1.80 \times 10^3 \) dm\(^3\) mol\(^{-1}\) at 25 °C and \(3.45 \times 10^3 \) dm\(^3\) mol\(^{-1}\) at 40 °C. Assuming \(\Delta H^0 \) to be independent of temperature, calculate \(\Delta H^0 \) and \(\Delta S^0 \).

\[
\ln K_1 = -\frac{\Delta H}{R T_1} + \frac{\Delta S}{R}
\]

\[
\ln K_2 = -\frac{\Delta H}{R T_2} + \frac{\Delta S}{R}
\]

Thus,

\[
\ln \frac{K_2}{K_1} = \frac{\Delta H}{R T_1} \left(\frac{T_2 - T_1}{T_1 T_2} \right)
\]

Upon substitution, we will get \(\Delta H = 33.67 \text{ kJ/mol}; \Delta S = 175.2 \text{ J/K mol} \)
32. The forward rate constant for the elementary reaction, \(C_2H_6 \leftrightarrow 2CH_3 \)
is \(1.57 \times 10^{-3} \) s\(^{-1}\) at 1000 K. What is the rate constant for the backward reaction at this
temperature? For \(CH_3 \) (g), \(\Delta_f G^0 = 159.74 \) kJ mol\(^{-1}\) at 1000 K. For \(C_2H_6 \), \(\Delta_f G^0 = 260.76 \) kJ
mol\(^{-1}\) at 1000 K.

\[
\Delta_r G^0 = 2\Delta_f G^0(CH_3) - \Delta_f G^0(C_2H_6)
\]
\[
= 2(159.82) - 260.76 = 58.88 \text{ kJ/mole}
\]

\[
K_p = \exp\left\{ \frac{-\Delta_r G^0}{RT} \right\}
\]
\[
= \exp\left\{ \frac{-58.88}{(8.314\times10^{-3})(1000)} \right\} = 9.12 \times 10^{-4}
\]

\[
K_c = \frac{([CH_3]/c^0)^2}{[C_2H_6]/c^0} = K_p \frac{P^0}{c^0RT} = (9.12\times10^{-4}) \frac{1 \text{ bar}}{(1 \text{ mol/L})(0.083145)(1000K)} = 1.3 \times 10^{-13} \text{ mol/L}
\]

\[
k_b = \frac{k_f}{k_c} = \frac{1.57 \times 10^{-3}}{1.3 \times 10^{-13}} = 1.23 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}
\]

Question 33 carries 8 marks

33. A dimerization \(2A \rightarrow A_2 \) is found to be first order, with a half life of 666 s. The following
mechanism is suggested: \(A \rightarrow A^* \quad A^* + A \rightarrow A_2 \)

where \(k_2 \gg k_1 \). (a) What is the value for the rate constant \(k_1 \)? (b) What is the rate law representing the overall reaction? (c) If the initial concentration of \(A \) is 0.05 M, how much
time is required to reach \([A] = 0.0125 \text{ M}\)?
\[2A \rightarrow A_2\]
\[A \rightarrow A^*\]
\[A^* + A \rightarrow A_2\]

(a) \(t_{1/2} = 666 = \frac{0.693}{k} \Rightarrow k = 1.04 \times 10^{-3} \text{ s}^{-1}\)

but \(k_1 = \frac{k}{2} \Rightarrow k_1 = 5.20 \times 10^{-4} \text{ s}^{-1}\) (\(k\) is the overall rate constant. They have to work out question (b) to find this relation)

(b) Applying steady state approximation

\[\frac{d[A^*]}{dt} = 0 = k_1[A] - k_2[A^*][A]\]

\[k_2[A^*] = k_1\]

\[[A^*] = \frac{k_1}{k_2}\]

rate = \[\frac{1}{2} \frac{d[A]}{dt} = k_2[A^*][A] = k_1[A]\]

rate = \(2k_1[A] = k[A]\) \(\Rightarrow k_1 = \frac{k}{2}\)

(c) \(\ln \frac{[A]_0}{[A]} = kt\)

\(\ln \frac{0.05}{0.0125} = 1.04 \times 10^{-3} t\)

\[\Rightarrow t = \frac{1.38}{1.04 \times 10^{-3}} = 1.33 \times 10^3 \text{ s}\]