Lecture 18

Chain reactions

Nikolai Nikolaevic Semenov
1896-1986, Nobel 1956
Chain reactions are examples of complex reactions, with complex rate expressions.

In a chain reaction, the intermediate produced in one step generates an intermediate in another step.

This process goes on.

Intermediates are called chain carriers. Sometimes, the chain carriers are radicals, they can be ions as well. In nuclear fission they are neutrons.
There are several steps in a chain reaction.

1. Chain initiation

This can be by thermolysis (heating) or photolysis (absorption of light) leading to the breakage of a bond.

\[
\text{CH}_3\text{CH}_3 \rightarrow 2\cdot\text{CH}_3
\]

2. Propagation

In this the chain carrier makes another carrier.

\[
\cdot\text{CH}_3 + \text{CH}_3\text{CH}_3 \rightarrow \text{CH}_4 + \cdot\text{CH}_2\text{CH}_3
\]
3. Branching

One carrier makes more than one carrier.

\[\cdot\text{O}^\cdot + \text{H}_2\text{O} \rightarrow \text{HO}^\cdot + \text{HO}^\cdot \]

(oxygen has two unpaired electrons)

4. Retardation

Chain carrier may react with a product reducing the rate of formation of the product.

\[\cdot\text{H} + \text{HBr} \rightarrow \text{H}_2 + \cdot\text{Br} \]

Retardation makes another chain carrier, but the product concentration is reduced.
5. Chain termination

Radicals combine and the chain carriers are lost.

\[\text{CH}_3\text{CH}_2\cdot + \text{CH}_3\text{CH}_2\cdot \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \]

6. Inhibition

Chain carriers are removed by other processes, other than termination, say by foreign radicals.

\[\text{CH}_3\text{CH}_2\cdot + \cdot\text{R} \rightarrow \text{CH}_3\text{CH}_2\text{R} \]

All need not be there for a given reaction. Minimum necessary are, Initiation, propagation and termination.
How do we account for the rate of laws of chain reactions?

Look at the thermal decomposition of acetaldehyde. This appears to follow three-halves order in acetaldehyde.

Overall reaction,

\[
\text{CH}_3\text{CHO}(g) \rightarrow \text{CH}_4(g) + \text{CO}(g) \quad \frac{d[\text{CH}_4]}{dt} = k[\text{CH}_3\text{CHO}]^{3/2}
\]

The mechanism for this reaction known as Rice-Herzfeld mechanism is as follows.

(a) Initiation: \[\text{CH}_3\text{CHO} \rightarrow \cdot\text{CH}_3 + \cdot\text{CHO} \quad R = k_a [\text{CH}_3\text{CHO}]\]

(b) Propagation: \[\text{CH}_3\text{CHO} + \cdot\text{CH}_3 \rightarrow \text{CH}_4 + \text{CH}_3\text{CO}· \quad R = k_b [\text{CH}_3\text{CHO}][\cdot\text{CH}_3]\]

(c) Propagation: \[\text{CH}_3\text{CO}· \rightarrow \cdot\text{CH}_3 + \text{CO} \quad R = k_c [\text{CH}_3\text{CO}·]\]

(d) Termination: \[\cdot\text{CH}_3 + \cdot\text{CH}_3 \rightarrow \text{CH}_3\text{CH}_3 \quad R = k_d [\cdot\text{CH}_3]^2\]
Although the mechanism explains the principal products, there are several minor products such as acetone (CH₃COCH₃) and propanal (CH₃CH₂CHO).

The rate equation can be derived on the basis of steady-state approximation. The rate of change of intermediates may be set equal to zero.

\[
\begin{align*}
\frac{d[\cdot\text{CH₃}]}{dt} &= k_a[\text{CH₃CHO}] - k_b[\cdot\text{CH₃}][\text{CH₃CHO}] + k_c[\text{CH₃CO·}] - 2k_d[\cdot\text{CH₃}]^2 = 0 \\
\frac{d[\text{CH₃CO·}]}{dt} &= k_b[\cdot\text{CH₃}][\text{CH₃CHO}] - k_c[\text{CH₃CO·}] = 0
\end{align*}
\]
The sum of the two equation is,

\[k_a[\text{CH}_3\text{CHO}] - 2k_d[\cdot\text{CH}_3]^2 = 0 \]

The steady-state concentration of \(\cdot\text{CH}_3 \) radicals is,

\[[\cdot\text{CH}_3] = \left(\frac{k_a}{2k_d}\right)^{1/2} [\text{CH}_3\text{CHO}]^{1/2} \]

It follows that the rate of formation of \(\text{CH}_4 \) is

\[\frac{d[\text{CH}_4]}{dt} = k_b[\cdot\text{CH}_3][\text{CH}_3\text{CHO}] = k_b \left(\frac{k_a}{2k_d}\right)^{1/2} [\text{CH}_3\text{CHO}]^{3/2} \]

Thus the mechanism explains the observed rate expression. It is sure that the true rate law is more complicated than that observed experimentally.

There are several cases where the reaction is complicated.
An example is,

$$\text{H}_2(\text{g}) + \text{Br}_2(\text{g}) \rightarrow 2\text{HBr}(\text{g}) \quad \frac{d[\text{HBr}]}{dt} = \frac{k[\text{H}_2][\text{Br}_2]^{3/2}}{[\text{Br}_2] + k'[\text{HBr}]}$$

The following mechanism has been proposed to account for this rate law.

(a) Initiation: $\text{Br}_2 + \text{M} \rightarrow \text{Br} \cdot + \text{Br} \cdot + \text{M}$ \quad $R = k_a[\text{Br}_2][\text{M}]$

where M is either Br_2 or H_2.

(b) Propagation: $\text{Br} \cdot + \text{H}_2 \rightarrow \text{HBr} + \text{H} \cdot$ \quad $R = k_b[\text{Br} \cdot][\text{H}_2]$

\quad $\text{H} \cdot + \text{Br}_2 \rightarrow \text{HBr} + \text{Br} \cdot$ \quad $R = k'_b[\text{H} \cdot][\text{Br}_2]$

(c) Retardation: $\text{H} \cdot + \text{HBr} \rightarrow \text{H}_2 + \text{Br} \cdot$ \quad $R = k_c[\text{H} \cdot][\text{HBr}]$

(d) Termination: $\text{Br} \cdot + \text{Br} \cdot + \text{M} \rightarrow \text{Br}_2 + \text{M}^*$ \quad $R = k_d[\text{Br} \cdot]^2[\text{M}]$

The third body collision removes the excess energy.
There can be other recombinations also, such as H. + H. and H. + Br..

The net rate of formation of HBr is,

\[\frac{d[HBr]}{dt} = k_b[Br\cdot][H_2] + k'_b[H\cdot][Br_2] - k_c[H\cdot][HBr] \]

We can apply stead state.

\[\frac{d[H\cdot]}{dt} = k_b[Br\cdot][H_2] - k'_b[H\cdot][Br_2] - k_c[H\cdot][HBr] = 0 \]

\[\frac{d[Br\cdot]}{dt} = 2k_a[Br_2][M] - k_b[Br\cdot][H_2] + k'_b[H\cdot][Br_2] + k_c[H\cdot][HBr] - 2k_d[Br\cdot]^2[M] = 0 \]

\[[Br\cdot] = \left(\frac{k_a}{k_d}\right)^{1/2} [Br_2]^{1/2} \]

\[[H\cdot] = k_b(k_a/k_d)^{1/2} [H_2][Br_2]^{1/2}/\{k'_b[Br_2] + k_c[HBr]\} \]
Substitute in the HBr rate law.

\[
d[HBr]/dt = 2k_b(k_a/k_d)^{1/2}[H_2][Br_2]^{3/2}/[[Br_2] + (k_c/k'_b)[HBr]]
\]

If it is compared with the experimental rate law one can see,
\[
k = 2k_b(k_a/k_d)^{1/2} \quad k' = k_c/k'_b
\]

Presence of HBr in the denominator indicates that it is an inhibitor. Presence of Br₂ in the denominator is because of the fact that its presence removes reactive radicals from the chain mechanism.

If we plot HBr concentration as a function of time, it will reach a maximum as increased presence of HBr will retard the reaction.
Explosions

There are two kinds: thermal and chain-branching.

Thermal: This is because in an exothermic reaction if the energy cannot escape, the reaction rate increases fast due to concentration of energy.

Chain-branching: In this case, there are chain branching reactions and the number of carriers grows exponentially.

An example of the latter type, $2\text{H}_2(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(g)$

The mechanism is very complex. Yet there are these steps, which explain explosion.
Initiation: \[\text{H}_2 + \text{O}_2 \rightarrow \cdot \text{OH} + \cdot \text{OH} \]

Propagation: \[\begin{align*}
\text{H}_2 + \cdot \text{OH} & \rightarrow \cdot \text{H} + \text{H}_2\text{O} \\
\text{O}_2 + \cdot \text{H} & \rightarrow \cdot \text{O} + \cdot \text{OH} \quad \text{(branching)} \\
\cdot \text{O} + \text{H}_2 & \rightarrow \cdot \text{OH} + \cdot \text{H} \quad \text{(branching)} \\
\cdot \text{H} + \text{O}_2 + \text{M} & \rightarrow \text{HO}_2\cdot + \text{M}^*
\end{align*} \]

The explosions depend on temperature and pressure.

This is explained in the figure below.
Regions of explosion

- Third explosion limit
- Steady reaction
- Second explosion limit
- First explosion limit
- Explosion

Variables:
- \(\log(p/p_a) \) on the y-axis
- Temperature in Kelvin (T/K) on the x-axis
At low pressures the chain carriers can reach the walls and get lost. No explosion happens. As the pressure is increased along the dotted line shown, the radicals react before reaching the walls and the reaction suddenly becomes explosive. This is the first explosion limit. In the second explosion limit, the pressure of the products is high so that reactions of the type, $\text{O}_2 + \text{H.} \rightarrow .\text{O}_2\text{H}$ occur. These recombination reactions become efficient as the excess energy can be removed by three body collisions. Then the reaction goes smoothly. In the third explosion limit, thermal explosion occur. In this limit, reaction such as $\text{HO}_2. + \text{H}_2 \rightarrow \text{H}_2\text{O}_2 + \text{H.}$ dominates the elimination of $\text{HO}_2.$ by the walls.