Transparent and Flexible Nacre-Like Hybrid Films of Aminoclays and Carboxylated Cellulose Nanofibrils

Yingxin Liu, Shu-Hong Yu, and Lennart Bergström

Y. Liu, Prof. L. Bergström
Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden

Y. Liu, Prof. L. Bergström
Wallenberg Wood Science Center, KTH, 10044 Stockholm, Sweden

Prof. S.-H. Yu
Hefei National Laboratory for Physical Sciences at Microscale, Center for Excellence in Nanoscience, University of Science and Technology of China, China

Azhar
07.10.2017
Nacre, also known as mother of pearl, is an organic-inorganic composite material produced by some molluscs as an inner shell layer; it also makes up the outer coating of pearls. It is strong, resilient, and iridescent.

The secret of success is their hierarchically ordered structure at multiscale levels.

It consists of about 95 weight % (wt%) of brittle aragonitic CaCO3 and 5 wt % of organic materials.

Nacre and other biological composites with extraordinary performance and functionalities, such as bone, enamel, and dentin, serve as an important inspiration for the design and fabrication of strong and multifunctional composite materials.

Combining a high mechanical strength with a high degree of flexibility and optical transparency is of interest in, e.g., optoelectronics and barrier coatings.
In this paper:

- Nacre-like and transparent hybrid films of positively charged AC and negatively charged carboxylated CNF have been produced.

- Aminoclay (AC), which is 3-aminopropyl functionalized magnesium phyllosilicate \([(\text{CH2CH2NH2})_8\text{Si}_8\text{Mg}_6\text{O}_{16}(\text{OH})_4]\) is a highly exfoliated and colloidally stable plate-like nanoclay.

- The AC nanoparticles are positively charged and thus differ from most natural clays.

- CNF is a renewable nanomaterial characterized by a low density, optical transparency, high stiffness, and high tensile strength that has been used to produce nacre-like and nanoclay-based composites with a high stiffness and strength.

- These structures are produced by vacuum filtration of aqueous-based colloidal dispersions of AC and CNF particles with nanoclay contents ranging from 30 to 80 wt%.

- They are ionically bonded and display a visible light transparency above 70% and a strength and strain to failure that are significantly better than biogenic nacre.
Results and Discussion:

Table 1. Composition, thickness, and density of the AC-CNF hybrid films.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Theoretical AC ratio [wt%]</th>
<th>TGA calculated AC ratioa [wt%]</th>
<th>Film thickness [µm]</th>
<th>Film density [g cm$^{-3}$]</th>
<th>Relative densityb</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF</td>
<td>0</td>
<td>0</td>
<td>19.1 ± 1.7</td>
<td>0.93 ± 0.08</td>
<td>0.58 ± 0.05</td>
</tr>
<tr>
<td>AC0.5</td>
<td>33.3</td>
<td>32.9 ± 1.1</td>
<td>21.5 ± 1.3</td>
<td>1.23 ± 0.07</td>
<td>0.68 ± 0.04</td>
</tr>
<tr>
<td>AC1</td>
<td>50</td>
<td>48.4 ± 0.7</td>
<td>23.1 ± 1.4</td>
<td>1.53 ± 0.09</td>
<td>0.78 ± 0.05</td>
</tr>
<tr>
<td>AC1.5</td>
<td>60</td>
<td>61.3 ± 0.8</td>
<td>28.1 ± 1.5</td>
<td>1.58 ± 0.08</td>
<td>0.78 ± 0.04</td>
</tr>
<tr>
<td>AC2</td>
<td>66.7</td>
<td>71 ± 0.4</td>
<td>32.6 ± 3.1</td>
<td>1.64 ± 0.15</td>
<td>0.78 ± 0.07</td>
</tr>
<tr>
<td>AC4</td>
<td>80</td>
<td>78.2 ± 1.2</td>
<td>49.2 ± 1.2</td>
<td>1.79 ± 0.04</td>
<td>0.79 ± 0.02</td>
</tr>
</tbody>
</table>

a Determined by TGA profiles in the plateau from 700 to 800 °C; b Ratio of experimental density (ρ_{exp}) and theoretical density (ρ_{theo}) of AC-CNF films, $\rho_{\text{theo}} = 1/(\omega_{\text{AC}}/\rho_{\text{AC}} + \omega_{\text{NC}}/\rho_{\text{CNF}})$, where $\rho_{\text{CNF}} = 1.59$ g cm$^{-3}$, $\rho_{\text{AC}} = 2.5$ g cm$^{-3}$.
Structure and properties of cellulose nanofibrils (CNF), aminoclay (AC), and the AC-CNf hybrid films. a) AFM image of CNF. b) Transmission electron microscopy (TEM) image of AC. c) Atomic structure of AC. d) Digital photo of the AC1 film placed on top of an image of the Stockholm University logo. e) Illustration of the flexibility of an AC-CNf hybrid film with a mass ratio of 2.
Optical Transparency:

\[
T = \exp \left[-4 \frac{\pi^4}{\lambda^4} \left(\frac{n_{AC}^2 - n_{\text{matrix}}^2}{n_{AC}^2 + 2n_{\text{matrix}}^2} \right) \cdot d^3 \cdot \phi \cdot z \right] - S_0
\]

where \(T \) is the transmittance, \(\lambda \) is the wavelength, \(n_{\text{matrix}} \) is the refractive index of the CNF matrix, \(n_{AC} \) is the refractive index of the AC, \(d \) is the AC particle diameter, \(\phi \) is the volume content of AC, and \(z \) is the thickness of hybrid film. The \(S_0 \) term corresponds to the intrinsic scattering of the CNF matrix.

Optical transparency of AC-CNF films with varying AC/CNF mass ratios and cross-sectional SEM images of AC1 film. a) Transmittance of films within the visible wavelength region. b) Transmittance of AC-CNF films at 550 nm c) Low-resolution image of AC1 film. d) High-resolution image of AC1 film. The average film thickness of the hybrid films varies from 19 to 49 µm with increasing AC/CNF ratios.
FTIR spectra of AC-CNf hybrid films. a) Characteristic bands of both CNF and AC nanoparticles from 3800 to 500 cm\(^{-1}\). b) Amplified spectra of AC, CNF, and AC\(_2\) films between 2000 and 500 cm\(^{-1}\). c) FTIR spectra of AC, protonated CNF (CNF-COOH), and the corresponding protonated AC\(_2\) films. d) The subtracted spectra of protonated AC\(_2\) film with the spectra of protonated CNF using the CH band of CNF at 2890 cm\(^{-1}\) as an internal reference.
Mechanical properties of AC-CN mort films as a function of the AC/CNF mass ratio ranging from 0 to 4. a) Stress–strain curves. b) Tensile strength at rupture. c) Young's modulus. d) Strain to failure. e) Works of fracture. All measurements were performed at 50% relative humidity and 25 °C, at a strain rate of 1 mm min−1.
Comparison of optical transparency and mechanical properties of aminoclay (50 wt%)-CNF hybrid film with previously reported CNF/polymer-nanoclay films. a) Transmittance of visible light (400–700 nm). b) Tensile strength, strain to failure, and film thickness of the AC1 hybrid film (AC/CNF mass ratio of 1) compared with previously reported hybrid films of CNF and/or polymers and inorganic plate-like particles (MTM, talc, and graphene oxide).

PEDOT:PSS, TALC, PVA and HEC refer to poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate),[30] talcum, polyvinyl alcohol and hydroxyethyl cellulose, respectively.
✓ Synthetic clay nanoparticles with a positive surface charge and carboxylated CNF with a negative surface charge have been used to fabricate nacre-like hybrid films.

✓ Infrared spectroscopy and SEM EDAX show that the AC particles form ionic bonds with the CNF with a homogeneous distribution of the AC particles within the fibrous CNF matrix.

✓ The hybrids films display a very high transparency that was related to the homogeneous distribution of the AC nanoparticles.

✓ The ionically bonded AC-CNFn hybrid films displayed a combination of high tensile strength and large strain to failure that significantly surpass the biogenic nacre and polymer-clay films.

✓ The outstanding mechanical and optical properties of the flexible AC-CNFn hybrid films were related to the relatively low aspect ratio of the AC nanoparticles and the ionic bonding between the cationic clays and the anionic CNF.
Thank you